Cargando…

Is spinal sagittal alignment of diffuse idiopathic skeletal hyperostosis relevant to thoracolumbar pain? A controlled study

OBJECTIVES: The extension of diffuse idiopathic skeletal hyperostosis (DISH) from the low thoracic spine to the lumbar spine result in adjustment of spinal sagittal alignment in surgical patients. The aim of this study was to investigate changes in sagittal alignment and back pain in the thoracolumb...

Descripción completa

Detalles Bibliográficos
Autores principales: Ruan, Shengyu, Song, Xiaoting, Xu, Xianquan, Lu, Fangying, Yuan, Chiting, Zhang, Binhao, Tung, Tao-Hsin, Hong, Dun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793584/
https://www.ncbi.nlm.nih.gov/pubmed/36575424
http://dx.doi.org/10.1186/s12891-022-06084-0
Descripción
Sumario:OBJECTIVES: The extension of diffuse idiopathic skeletal hyperostosis (DISH) from the low thoracic spine to the lumbar spine result in adjustment of spinal sagittal alignment in surgical patients. The aim of this study was to investigate changes in sagittal alignment and back pain in the thoracolumbar spine in nonsurgical DISH and control participants selected from a radiological database. METHODS: Participants in the DISH and the control group were selected by searching for “DISH or degenerative changes in the thoracic spine” in the radiology database of Taizhou Hospital between 2018 and 2021 using Resnick and Niwayama’s criteria. The subjects with spinal tumors, previous spinal surgery, vertebral fractures, inflammatory diseases, poor-quality radiographs, or loss of follow-up were excluded. Demographic and clinical characteristics were recorded retrospectively via the hospital information system and telephone follow-up. Segmental disc angles (SDAs), lumbar lordosis (LL), and bridge scores were analyzed using images of three-dimensional CT. RESULTS: The final participants consisted of 51 individuals with DISH (DISH group) and 102 individuals without DISH (control group). Depending on the presence of thoracolumbar pain, the DISH group was divided into the DISH group with thoracolumbar pain (DISH+Pain) and the DISH group without thoracolumbar pain (DISH-Pain). The LL and SDAs of T11-T12 and T12-L1 were significantly greater in the DISH group than in the control group. In addition, the SDA of L1-L2 was significantly smaller in the DISH+Pain group than in the DISH-Pain group, whereas there was no significant difference in lumbar lordosis between the DISH+Pain group and the DISH-Pain group. The bridge scores in DISH+Pain group was larger in T10-T11 (p = 0.01) and L1-L2 (p < 0.01) spine segments than those in DISH-Pain group. CONCLUSION: The extension of DISH from thoracic to lumbar spine may increase lumbar lordosis and SDAs in the thoracolumbar spine. The DISH patients with more bony bridging and small L1-L2 SDA may be more likely have thoracolumbar pain. Adjustment of sagittal alignment of the spine in the development of DISH may be of clinical importance. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12891-022-06084-0.