Cargando…
Some Generating Functions for q-Polynomials
Demonstrating the striking symmetry between calculus and q-calculus, we obtain q-analogues of the Bateman, Pasternack, Sylvester, and Cesàro polynomials. Using these, we also obtain q-analogues for some of their generating functions. Our q-generating functions are given in terms of the basic hyperge...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793654/ https://www.ncbi.nlm.nih.gov/pubmed/36578794 http://dx.doi.org/10.3390/sym10120758 |
_version_ | 1784859883060854784 |
---|---|
author | Cohl, Howard S. Costas-Santos, Roberto S. Wakhare, Tanay V. |
author_facet | Cohl, Howard S. Costas-Santos, Roberto S. Wakhare, Tanay V. |
author_sort | Cohl, Howard S. |
collection | PubMed |
description | Demonstrating the striking symmetry between calculus and q-calculus, we obtain q-analogues of the Bateman, Pasternack, Sylvester, and Cesàro polynomials. Using these, we also obtain q-analogues for some of their generating functions. Our q-generating functions are given in terms of the basic hypergeometric series (4)ϕ(5), (5)ϕ(5), (4)ϕ(3), (3)ϕ(2), (2)ϕ(1), and q-Pochhammer symbols. Starting with our q-generating functions, we are also able to find some new classical generating functions for the Pasternack and Bateman polynomials. |
format | Online Article Text |
id | pubmed-9793654 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
record_format | MEDLINE/PubMed |
spelling | pubmed-97936542022-12-27 Some Generating Functions for q-Polynomials Cohl, Howard S. Costas-Santos, Roberto S. Wakhare, Tanay V. Symmetry (Basel) Article Demonstrating the striking symmetry between calculus and q-calculus, we obtain q-analogues of the Bateman, Pasternack, Sylvester, and Cesàro polynomials. Using these, we also obtain q-analogues for some of their generating functions. Our q-generating functions are given in terms of the basic hypergeometric series (4)ϕ(5), (5)ϕ(5), (4)ϕ(3), (3)ϕ(2), (2)ϕ(1), and q-Pochhammer symbols. Starting with our q-generating functions, we are also able to find some new classical generating functions for the Pasternack and Bateman polynomials. 2018 /pmc/articles/PMC9793654/ /pubmed/36578794 http://dx.doi.org/10.3390/sym10120758 Text en https://creativecommons.org/licenses/by/4.0/This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Article Cohl, Howard S. Costas-Santos, Roberto S. Wakhare, Tanay V. Some Generating Functions for q-Polynomials |
title | Some Generating Functions for q-Polynomials |
title_full | Some Generating Functions for q-Polynomials |
title_fullStr | Some Generating Functions for q-Polynomials |
title_full_unstemmed | Some Generating Functions for q-Polynomials |
title_short | Some Generating Functions for q-Polynomials |
title_sort | some generating functions for q-polynomials |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793654/ https://www.ncbi.nlm.nih.gov/pubmed/36578794 http://dx.doi.org/10.3390/sym10120758 |
work_keys_str_mv | AT cohlhowards somegeneratingfunctionsforqpolynomials AT costassantosrobertos somegeneratingfunctionsforqpolynomials AT wakharetanayv somegeneratingfunctionsforqpolynomials |