Cargando…
Single-neuron models linking electrophysiology, morphology, and transcriptomics across cortical cell types
Which cell types constitute brain circuits is a fundamental question, but establishing the correspondence across cellular data modalities is challenging. Bio-realistic models allow probing cause-and-effect and linking seemingly disparate modalities. Here, we introduce a computational optimization wo...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793758/ https://www.ncbi.nlm.nih.gov/pubmed/35947954 http://dx.doi.org/10.1016/j.celrep.2022.111176 |
_version_ | 1784859902799249408 |
---|---|
author | Nandi, Anirban Chartrand, Thomas Van Geit, Werner Buchin, Anatoly Yao, Zizhen Lee, Soo Yeun Wei, Yina Kalmbach, Brian Lee, Brian Lein, Ed Berg, Jim Sümbül, Uygar Koch, Christof Tasic, Bosiljka Anastassiou, Costas A. |
author_facet | Nandi, Anirban Chartrand, Thomas Van Geit, Werner Buchin, Anatoly Yao, Zizhen Lee, Soo Yeun Wei, Yina Kalmbach, Brian Lee, Brian Lein, Ed Berg, Jim Sümbül, Uygar Koch, Christof Tasic, Bosiljka Anastassiou, Costas A. |
author_sort | Nandi, Anirban |
collection | PubMed |
description | Which cell types constitute brain circuits is a fundamental question, but establishing the correspondence across cellular data modalities is challenging. Bio-realistic models allow probing cause-and-effect and linking seemingly disparate modalities. Here, we introduce a computational optimization workflow to generate 9,200 single-neuron models with active conductances. These models are based on 230 in vitro electrophysiological experiments followed by morphological reconstruction from the mouse visual cortex. We show that, in contrast to current belief, the generated models are robust representations of individual experiments and cortical cell types as defined via cellular electrophysiology or transcriptomics. Next, we show that differences in specific conductances predicted from the models reflect differences in gene expression supported by single-cell transcriptomics. The differences in model conductances, in turn, explain electrophysiological differences observed between the cortical subclasses. Our computational effort reconciles single-cell modalities that define cell types and enables causal relationships to be examined. |
format | Online Article Text |
id | pubmed-9793758 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
record_format | MEDLINE/PubMed |
spelling | pubmed-97937582022-12-27 Single-neuron models linking electrophysiology, morphology, and transcriptomics across cortical cell types Nandi, Anirban Chartrand, Thomas Van Geit, Werner Buchin, Anatoly Yao, Zizhen Lee, Soo Yeun Wei, Yina Kalmbach, Brian Lee, Brian Lein, Ed Berg, Jim Sümbül, Uygar Koch, Christof Tasic, Bosiljka Anastassiou, Costas A. Cell Rep Article Which cell types constitute brain circuits is a fundamental question, but establishing the correspondence across cellular data modalities is challenging. Bio-realistic models allow probing cause-and-effect and linking seemingly disparate modalities. Here, we introduce a computational optimization workflow to generate 9,200 single-neuron models with active conductances. These models are based on 230 in vitro electrophysiological experiments followed by morphological reconstruction from the mouse visual cortex. We show that, in contrast to current belief, the generated models are robust representations of individual experiments and cortical cell types as defined via cellular electrophysiology or transcriptomics. Next, we show that differences in specific conductances predicted from the models reflect differences in gene expression supported by single-cell transcriptomics. The differences in model conductances, in turn, explain electrophysiological differences observed between the cortical subclasses. Our computational effort reconciles single-cell modalities that define cell types and enables causal relationships to be examined. 2022-08-09 /pmc/articles/PMC9793758/ /pubmed/35947954 http://dx.doi.org/10.1016/j.celrep.2022.111176 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ). |
spellingShingle | Article Nandi, Anirban Chartrand, Thomas Van Geit, Werner Buchin, Anatoly Yao, Zizhen Lee, Soo Yeun Wei, Yina Kalmbach, Brian Lee, Brian Lein, Ed Berg, Jim Sümbül, Uygar Koch, Christof Tasic, Bosiljka Anastassiou, Costas A. Single-neuron models linking electrophysiology, morphology, and transcriptomics across cortical cell types |
title | Single-neuron models linking electrophysiology, morphology, and transcriptomics across cortical cell types |
title_full | Single-neuron models linking electrophysiology, morphology, and transcriptomics across cortical cell types |
title_fullStr | Single-neuron models linking electrophysiology, morphology, and transcriptomics across cortical cell types |
title_full_unstemmed | Single-neuron models linking electrophysiology, morphology, and transcriptomics across cortical cell types |
title_short | Single-neuron models linking electrophysiology, morphology, and transcriptomics across cortical cell types |
title_sort | single-neuron models linking electrophysiology, morphology, and transcriptomics across cortical cell types |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793758/ https://www.ncbi.nlm.nih.gov/pubmed/35947954 http://dx.doi.org/10.1016/j.celrep.2022.111176 |
work_keys_str_mv | AT nandianirban singleneuronmodelslinkingelectrophysiologymorphologyandtranscriptomicsacrosscorticalcelltypes AT chartrandthomas singleneuronmodelslinkingelectrophysiologymorphologyandtranscriptomicsacrosscorticalcelltypes AT vangeitwerner singleneuronmodelslinkingelectrophysiologymorphologyandtranscriptomicsacrosscorticalcelltypes AT buchinanatoly singleneuronmodelslinkingelectrophysiologymorphologyandtranscriptomicsacrosscorticalcelltypes AT yaozizhen singleneuronmodelslinkingelectrophysiologymorphologyandtranscriptomicsacrosscorticalcelltypes AT leesooyeun singleneuronmodelslinkingelectrophysiologymorphologyandtranscriptomicsacrosscorticalcelltypes AT weiyina singleneuronmodelslinkingelectrophysiologymorphologyandtranscriptomicsacrosscorticalcelltypes AT kalmbachbrian singleneuronmodelslinkingelectrophysiologymorphologyandtranscriptomicsacrosscorticalcelltypes AT leebrian singleneuronmodelslinkingelectrophysiologymorphologyandtranscriptomicsacrosscorticalcelltypes AT leined singleneuronmodelslinkingelectrophysiologymorphologyandtranscriptomicsacrosscorticalcelltypes AT bergjim singleneuronmodelslinkingelectrophysiologymorphologyandtranscriptomicsacrosscorticalcelltypes AT sumbuluygar singleneuronmodelslinkingelectrophysiologymorphologyandtranscriptomicsacrosscorticalcelltypes AT kochchristof singleneuronmodelslinkingelectrophysiologymorphologyandtranscriptomicsacrosscorticalcelltypes AT tasicbosiljka singleneuronmodelslinkingelectrophysiologymorphologyandtranscriptomicsacrosscorticalcelltypes AT anastassioucostasa singleneuronmodelslinkingelectrophysiologymorphologyandtranscriptomicsacrosscorticalcelltypes |