Cargando…

Single-neuron models linking electrophysiology, morphology, and transcriptomics across cortical cell types

Which cell types constitute brain circuits is a fundamental question, but establishing the correspondence across cellular data modalities is challenging. Bio-realistic models allow probing cause-and-effect and linking seemingly disparate modalities. Here, we introduce a computational optimization wo...

Descripción completa

Detalles Bibliográficos
Autores principales: Nandi, Anirban, Chartrand, Thomas, Van Geit, Werner, Buchin, Anatoly, Yao, Zizhen, Lee, Soo Yeun, Wei, Yina, Kalmbach, Brian, Lee, Brian, Lein, Ed, Berg, Jim, Sümbül, Uygar, Koch, Christof, Tasic, Bosiljka, Anastassiou, Costas A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793758/
https://www.ncbi.nlm.nih.gov/pubmed/35947954
http://dx.doi.org/10.1016/j.celrep.2022.111176
_version_ 1784859902799249408
author Nandi, Anirban
Chartrand, Thomas
Van Geit, Werner
Buchin, Anatoly
Yao, Zizhen
Lee, Soo Yeun
Wei, Yina
Kalmbach, Brian
Lee, Brian
Lein, Ed
Berg, Jim
Sümbül, Uygar
Koch, Christof
Tasic, Bosiljka
Anastassiou, Costas A.
author_facet Nandi, Anirban
Chartrand, Thomas
Van Geit, Werner
Buchin, Anatoly
Yao, Zizhen
Lee, Soo Yeun
Wei, Yina
Kalmbach, Brian
Lee, Brian
Lein, Ed
Berg, Jim
Sümbül, Uygar
Koch, Christof
Tasic, Bosiljka
Anastassiou, Costas A.
author_sort Nandi, Anirban
collection PubMed
description Which cell types constitute brain circuits is a fundamental question, but establishing the correspondence across cellular data modalities is challenging. Bio-realistic models allow probing cause-and-effect and linking seemingly disparate modalities. Here, we introduce a computational optimization workflow to generate 9,200 single-neuron models with active conductances. These models are based on 230 in vitro electrophysiological experiments followed by morphological reconstruction from the mouse visual cortex. We show that, in contrast to current belief, the generated models are robust representations of individual experiments and cortical cell types as defined via cellular electrophysiology or transcriptomics. Next, we show that differences in specific conductances predicted from the models reflect differences in gene expression supported by single-cell transcriptomics. The differences in model conductances, in turn, explain electrophysiological differences observed between the cortical subclasses. Our computational effort reconciles single-cell modalities that define cell types and enables causal relationships to be examined.
format Online
Article
Text
id pubmed-9793758
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-97937582022-12-27 Single-neuron models linking electrophysiology, morphology, and transcriptomics across cortical cell types Nandi, Anirban Chartrand, Thomas Van Geit, Werner Buchin, Anatoly Yao, Zizhen Lee, Soo Yeun Wei, Yina Kalmbach, Brian Lee, Brian Lein, Ed Berg, Jim Sümbül, Uygar Koch, Christof Tasic, Bosiljka Anastassiou, Costas A. Cell Rep Article Which cell types constitute brain circuits is a fundamental question, but establishing the correspondence across cellular data modalities is challenging. Bio-realistic models allow probing cause-and-effect and linking seemingly disparate modalities. Here, we introduce a computational optimization workflow to generate 9,200 single-neuron models with active conductances. These models are based on 230 in vitro electrophysiological experiments followed by morphological reconstruction from the mouse visual cortex. We show that, in contrast to current belief, the generated models are robust representations of individual experiments and cortical cell types as defined via cellular electrophysiology or transcriptomics. Next, we show that differences in specific conductances predicted from the models reflect differences in gene expression supported by single-cell transcriptomics. The differences in model conductances, in turn, explain electrophysiological differences observed between the cortical subclasses. Our computational effort reconciles single-cell modalities that define cell types and enables causal relationships to be examined. 2022-08-09 /pmc/articles/PMC9793758/ /pubmed/35947954 http://dx.doi.org/10.1016/j.celrep.2022.111176 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ).
spellingShingle Article
Nandi, Anirban
Chartrand, Thomas
Van Geit, Werner
Buchin, Anatoly
Yao, Zizhen
Lee, Soo Yeun
Wei, Yina
Kalmbach, Brian
Lee, Brian
Lein, Ed
Berg, Jim
Sümbül, Uygar
Koch, Christof
Tasic, Bosiljka
Anastassiou, Costas A.
Single-neuron models linking electrophysiology, morphology, and transcriptomics across cortical cell types
title Single-neuron models linking electrophysiology, morphology, and transcriptomics across cortical cell types
title_full Single-neuron models linking electrophysiology, morphology, and transcriptomics across cortical cell types
title_fullStr Single-neuron models linking electrophysiology, morphology, and transcriptomics across cortical cell types
title_full_unstemmed Single-neuron models linking electrophysiology, morphology, and transcriptomics across cortical cell types
title_short Single-neuron models linking electrophysiology, morphology, and transcriptomics across cortical cell types
title_sort single-neuron models linking electrophysiology, morphology, and transcriptomics across cortical cell types
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793758/
https://www.ncbi.nlm.nih.gov/pubmed/35947954
http://dx.doi.org/10.1016/j.celrep.2022.111176
work_keys_str_mv AT nandianirban singleneuronmodelslinkingelectrophysiologymorphologyandtranscriptomicsacrosscorticalcelltypes
AT chartrandthomas singleneuronmodelslinkingelectrophysiologymorphologyandtranscriptomicsacrosscorticalcelltypes
AT vangeitwerner singleneuronmodelslinkingelectrophysiologymorphologyandtranscriptomicsacrosscorticalcelltypes
AT buchinanatoly singleneuronmodelslinkingelectrophysiologymorphologyandtranscriptomicsacrosscorticalcelltypes
AT yaozizhen singleneuronmodelslinkingelectrophysiologymorphologyandtranscriptomicsacrosscorticalcelltypes
AT leesooyeun singleneuronmodelslinkingelectrophysiologymorphologyandtranscriptomicsacrosscorticalcelltypes
AT weiyina singleneuronmodelslinkingelectrophysiologymorphologyandtranscriptomicsacrosscorticalcelltypes
AT kalmbachbrian singleneuronmodelslinkingelectrophysiologymorphologyandtranscriptomicsacrosscorticalcelltypes
AT leebrian singleneuronmodelslinkingelectrophysiologymorphologyandtranscriptomicsacrosscorticalcelltypes
AT leined singleneuronmodelslinkingelectrophysiologymorphologyandtranscriptomicsacrosscorticalcelltypes
AT bergjim singleneuronmodelslinkingelectrophysiologymorphologyandtranscriptomicsacrosscorticalcelltypes
AT sumbuluygar singleneuronmodelslinkingelectrophysiologymorphologyandtranscriptomicsacrosscorticalcelltypes
AT kochchristof singleneuronmodelslinkingelectrophysiologymorphologyandtranscriptomicsacrosscorticalcelltypes
AT tasicbosiljka singleneuronmodelslinkingelectrophysiologymorphologyandtranscriptomicsacrosscorticalcelltypes
AT anastassioucostasa singleneuronmodelslinkingelectrophysiologymorphologyandtranscriptomicsacrosscorticalcelltypes