Cargando…
Development and validation of a 3D-convolutional neural network model based on chest CT for differentiating active pulmonary tuberculosis from community-acquired pneumonia
PURPOSE: To develop and validate a 3D-convolutional neural network (3D-CNN) model based on chest CT for differentiating active pulmonary tuberculosis (APTB) from community-acquired pneumonia (CAP). MATERIALS AND METHODS: Chest CT images of APTB and CAP patients diagnosed in two imaging centers (n = ...
Autores principales: | Han, Dong, Chen, Yibing, Li, Xuechao, Li, Wen, Zhang, Xirong, He, Taiping, Yu, Yong, Dou, Yuequn, Duan, Haifeng, Yu, Nan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Milan
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793822/ https://www.ncbi.nlm.nih.gov/pubmed/36574111 http://dx.doi.org/10.1007/s11547-022-01580-8 |
Ejemplares similares
-
Chest CT features of coronavirus disease 2019 (COVID-19) pneumonia: key points for radiologists
por: Carotti, Marina, et al.
Publicado: (2020) -
Chest CT texture-based radiomics analysis in differentiating COVID-19 from other interstitial pneumonia
por: Caruso, Damiano, et al.
Publicado: (2021) -
Chest tuberculosis: Radiological review and imaging recommendations
por: Bhalla, Ashu Seith, et al.
Publicado: (2015) -
COVID-19 pneumonia: computer-aided quantification of healthy lung parenchyma, emphysema, ground glass and consolidation on chest computed tomography (CT)
por: Grassi, Roberto, et al.
Publicado: (2020) -
Chest CT for early detection and management of coronavirus disease (COVID-19): a report of 314 patients admitted to Emergency Department with suspected pneumonia
por: Gaia, Cartocci, et al.
Publicado: (2020)