Cargando…
Explainable AI: A review of applications to neuroimaging data
Deep neural networks (DNNs) have transformed the field of computer vision and currently constitute some of the best models for representations learned via hierarchical processing in the human brain. In medical imaging, these models have shown human-level performance and even higher in the early diag...
Autores principales: | Farahani, Farzad V., Fiok, Krzysztof, Lahijanian, Behshad, Karwowski, Waldemar, Douglas, Pamela K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793854/ https://www.ncbi.nlm.nih.gov/pubmed/36583102 http://dx.doi.org/10.3389/fnins.2022.906290 |
Ejemplares similares
-
Application of Graph Theory for Identifying Connectivity Patterns in Human Brain Networks: A Systematic Review
por: Farahani, Farzad V., et al.
Publicado: (2019) -
Decoding Task-Based fMRI Data with Graph Neural Networks, Considering Individual Differences
por: Saeidi, Maham, et al.
Publicado: (2022) -
Neural Decoding of EEG Signals with Machine Learning: A Systematic Review
por: Saeidi, Maham, et al.
Publicado: (2021) -
Effects of Chronic Sleep Restriction on the Brain Functional Network, as Revealed by Graph Theory
por: Farahani, Farzad V., et al.
Publicado: (2019) -
Optimizing COVID-19 vaccine distribution across the United States using deterministic and stochastic recurrent neural networks
por: Davahli, Mohammad Reza, et al.
Publicado: (2021)