Cargando…
An immediate-return reinforcement learning for the atypical Markov decision processes
The atypical Markov decision processes (MDPs) are decision-making for maximizing the immediate returns in only one state transition. Many complex dynamic problems can be regarded as the atypical MDPs, e.g., football trajectory control, approximations of the compound Poincaré maps, and parameter iden...
Autores principales: | Pan, Zebang, Wen, Guilin, Tan, Zhao, Yin, Shan, Hu, Xiaoyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793950/ https://www.ncbi.nlm.nih.gov/pubmed/36582302 http://dx.doi.org/10.3389/fnbot.2022.1012427 |
Ejemplares similares
-
On the convergence of projective-simulation–based reinforcement learning in Markov decision processes
por: Boyajian, W. L., et al.
Publicado: (2020) -
Learning to maximize reward rate: a model based on semi-Markov decision processes
por: Khodadadi, Arash, et al.
Publicado: (2014) -
Evaluation of linearly solvable Markov decision process with dynamic model learning in a mobile robot navigation task
por: Kinjo, Ken, et al.
Publicado: (2013) -
Decision Making Under Uncertainty: A Neural Model Based on Partially Observable Markov Decision Processes
por: Rao, Rajesh P. N.
Publicado: (2010) -
Analyses of Markov Decision Process Structure Regarding the Possible Strategic use of Interacting Memory Systems
por: Zilli, Eric A., et al.
Publicado: (2008)