Cargando…
LambdaPP: Fast and accessible protein‐specific phenotype predictions
The availability of accurate and fast artificial intelligence (AI) solutions predicting aspects of proteins are revolutionizing experimental and computational molecular biology. The webserver LambdaPP aspires to supersede PredictProtein, the first internet server making AI protein predictions availa...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793974/ https://www.ncbi.nlm.nih.gov/pubmed/36454227 http://dx.doi.org/10.1002/pro.4524 |
_version_ | 1784859941101633536 |
---|---|
author | Olenyi, Tobias Marquet, Céline Heinzinger, Michael Kröger, Benjamin Nikolova, Tiha Bernhofer, Michael Sändig, Philip Schütze, Konstantin Littmann, Maria Mirdita, Milot Steinegger, Martin Dallago, Christian Rost, Burkhard |
author_facet | Olenyi, Tobias Marquet, Céline Heinzinger, Michael Kröger, Benjamin Nikolova, Tiha Bernhofer, Michael Sändig, Philip Schütze, Konstantin Littmann, Maria Mirdita, Milot Steinegger, Martin Dallago, Christian Rost, Burkhard |
author_sort | Olenyi, Tobias |
collection | PubMed |
description | The availability of accurate and fast artificial intelligence (AI) solutions predicting aspects of proteins are revolutionizing experimental and computational molecular biology. The webserver LambdaPP aspires to supersede PredictProtein, the first internet server making AI protein predictions available in 1992. Given a protein sequence as input, LambdaPP provides easily accessible visualizations of protein 3D structure, along with predictions at the protein level (GeneOntology, subcellular location), and the residue level (binding to metal ions, small molecules, and nucleotides; conservation; intrinsic disorder; secondary structure; alpha‐helical and beta‐barrel transmembrane segments; signal‐peptides; variant effect) in seconds. The structure prediction provided by LambdaPP—leveraging ColabFold and computed in minutes—is based on MMseqs2 multiple sequence alignments. All other feature prediction methods are based on the pLM ProtT5. Queried by a protein sequence, LambdaPP computes protein and residue predictions almost instantly for various phenotypes, including 3D structure and aspects of protein function. LambdaPP is freely available for everyone to use under embed.predictprotein.org, the interactive results for the case study can be found under https://embed.predictprotein.org/o/Q9NZC2. The frontend of LambdaPP can be found on GitHub (github.com/sacdallago/embed.predictprotein.org), and can be freely used and distributed under the academic free use license (AFL‐2). For high‐throughput applications, all methods can be executed locally via the bio‐embeddings (bioembeddings.com) python package, or docker image at ghcr.io/bioembeddings/bio_embeddings, which also includes the backend of LambdaPP. |
format | Online Article Text |
id | pubmed-9793974 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-97939742023-01-01 LambdaPP: Fast and accessible protein‐specific phenotype predictions Olenyi, Tobias Marquet, Céline Heinzinger, Michael Kröger, Benjamin Nikolova, Tiha Bernhofer, Michael Sändig, Philip Schütze, Konstantin Littmann, Maria Mirdita, Milot Steinegger, Martin Dallago, Christian Rost, Burkhard Protein Sci Tools for Protein Science The availability of accurate and fast artificial intelligence (AI) solutions predicting aspects of proteins are revolutionizing experimental and computational molecular biology. The webserver LambdaPP aspires to supersede PredictProtein, the first internet server making AI protein predictions available in 1992. Given a protein sequence as input, LambdaPP provides easily accessible visualizations of protein 3D structure, along with predictions at the protein level (GeneOntology, subcellular location), and the residue level (binding to metal ions, small molecules, and nucleotides; conservation; intrinsic disorder; secondary structure; alpha‐helical and beta‐barrel transmembrane segments; signal‐peptides; variant effect) in seconds. The structure prediction provided by LambdaPP—leveraging ColabFold and computed in minutes—is based on MMseqs2 multiple sequence alignments. All other feature prediction methods are based on the pLM ProtT5. Queried by a protein sequence, LambdaPP computes protein and residue predictions almost instantly for various phenotypes, including 3D structure and aspects of protein function. LambdaPP is freely available for everyone to use under embed.predictprotein.org, the interactive results for the case study can be found under https://embed.predictprotein.org/o/Q9NZC2. The frontend of LambdaPP can be found on GitHub (github.com/sacdallago/embed.predictprotein.org), and can be freely used and distributed under the academic free use license (AFL‐2). For high‐throughput applications, all methods can be executed locally via the bio‐embeddings (bioembeddings.com) python package, or docker image at ghcr.io/bioembeddings/bio_embeddings, which also includes the backend of LambdaPP. John Wiley & Sons, Inc. 2023-01-01 /pmc/articles/PMC9793974/ /pubmed/36454227 http://dx.doi.org/10.1002/pro.4524 Text en © 2022 The Authors. Protein Science published by Wiley Periodicals LLC on behalf of The Protein Society. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Tools for Protein Science Olenyi, Tobias Marquet, Céline Heinzinger, Michael Kröger, Benjamin Nikolova, Tiha Bernhofer, Michael Sändig, Philip Schütze, Konstantin Littmann, Maria Mirdita, Milot Steinegger, Martin Dallago, Christian Rost, Burkhard LambdaPP: Fast and accessible protein‐specific phenotype predictions |
title |
LambdaPP: Fast and accessible protein‐specific phenotype predictions |
title_full |
LambdaPP: Fast and accessible protein‐specific phenotype predictions |
title_fullStr |
LambdaPP: Fast and accessible protein‐specific phenotype predictions |
title_full_unstemmed |
LambdaPP: Fast and accessible protein‐specific phenotype predictions |
title_short |
LambdaPP: Fast and accessible protein‐specific phenotype predictions |
title_sort | lambdapp: fast and accessible protein‐specific phenotype predictions |
topic | Tools for Protein Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793974/ https://www.ncbi.nlm.nih.gov/pubmed/36454227 http://dx.doi.org/10.1002/pro.4524 |
work_keys_str_mv | AT olenyitobias lambdappfastandaccessibleproteinspecificphenotypepredictions AT marquetceline lambdappfastandaccessibleproteinspecificphenotypepredictions AT heinzingermichael lambdappfastandaccessibleproteinspecificphenotypepredictions AT krogerbenjamin lambdappfastandaccessibleproteinspecificphenotypepredictions AT nikolovatiha lambdappfastandaccessibleproteinspecificphenotypepredictions AT bernhofermichael lambdappfastandaccessibleproteinspecificphenotypepredictions AT sandigphilip lambdappfastandaccessibleproteinspecificphenotypepredictions AT schutzekonstantin lambdappfastandaccessibleproteinspecificphenotypepredictions AT littmannmaria lambdappfastandaccessibleproteinspecificphenotypepredictions AT mirditamilot lambdappfastandaccessibleproteinspecificphenotypepredictions AT steineggermartin lambdappfastandaccessibleproteinspecificphenotypepredictions AT dallagochristian lambdappfastandaccessibleproteinspecificphenotypepredictions AT rostburkhard lambdappfastandaccessibleproteinspecificphenotypepredictions |