Cargando…

LambdaPP: Fast and accessible protein‐specific phenotype predictions

The availability of accurate and fast artificial intelligence (AI) solutions predicting aspects of proteins are revolutionizing experimental and computational molecular biology. The webserver LambdaPP aspires to supersede PredictProtein, the first internet server making AI protein predictions availa...

Descripción completa

Detalles Bibliográficos
Autores principales: Olenyi, Tobias, Marquet, Céline, Heinzinger, Michael, Kröger, Benjamin, Nikolova, Tiha, Bernhofer, Michael, Sändig, Philip, Schütze, Konstantin, Littmann, Maria, Mirdita, Milot, Steinegger, Martin, Dallago, Christian, Rost, Burkhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793974/
https://www.ncbi.nlm.nih.gov/pubmed/36454227
http://dx.doi.org/10.1002/pro.4524
_version_ 1784859941101633536
author Olenyi, Tobias
Marquet, Céline
Heinzinger, Michael
Kröger, Benjamin
Nikolova, Tiha
Bernhofer, Michael
Sändig, Philip
Schütze, Konstantin
Littmann, Maria
Mirdita, Milot
Steinegger, Martin
Dallago, Christian
Rost, Burkhard
author_facet Olenyi, Tobias
Marquet, Céline
Heinzinger, Michael
Kröger, Benjamin
Nikolova, Tiha
Bernhofer, Michael
Sändig, Philip
Schütze, Konstantin
Littmann, Maria
Mirdita, Milot
Steinegger, Martin
Dallago, Christian
Rost, Burkhard
author_sort Olenyi, Tobias
collection PubMed
description The availability of accurate and fast artificial intelligence (AI) solutions predicting aspects of proteins are revolutionizing experimental and computational molecular biology. The webserver LambdaPP aspires to supersede PredictProtein, the first internet server making AI protein predictions available in 1992. Given a protein sequence as input, LambdaPP provides easily accessible visualizations of protein 3D structure, along with predictions at the protein level (GeneOntology, subcellular location), and the residue level (binding to metal ions, small molecules, and nucleotides; conservation; intrinsic disorder; secondary structure; alpha‐helical and beta‐barrel transmembrane segments; signal‐peptides; variant effect) in seconds. The structure prediction provided by LambdaPP—leveraging ColabFold and computed in minutes—is based on MMseqs2 multiple sequence alignments. All other feature prediction methods are based on the pLM ProtT5. Queried by a protein sequence, LambdaPP computes protein and residue predictions almost instantly for various phenotypes, including 3D structure and aspects of protein function. LambdaPP is freely available for everyone to use under embed.predictprotein.org, the interactive results for the case study can be found under https://embed.predictprotein.org/o/Q9NZC2. The frontend of LambdaPP can be found on GitHub (github.com/sacdallago/embed.predictprotein.org), and can be freely used and distributed under the academic free use license (AFL‐2). For high‐throughput applications, all methods can be executed locally via the bio‐embeddings (bioembeddings.com) python package, or docker image at ghcr.io/bioembeddings/bio_embeddings, which also includes the backend of LambdaPP.
format Online
Article
Text
id pubmed-9793974
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-97939742023-01-01 LambdaPP: Fast and accessible protein‐specific phenotype predictions Olenyi, Tobias Marquet, Céline Heinzinger, Michael Kröger, Benjamin Nikolova, Tiha Bernhofer, Michael Sändig, Philip Schütze, Konstantin Littmann, Maria Mirdita, Milot Steinegger, Martin Dallago, Christian Rost, Burkhard Protein Sci Tools for Protein Science The availability of accurate and fast artificial intelligence (AI) solutions predicting aspects of proteins are revolutionizing experimental and computational molecular biology. The webserver LambdaPP aspires to supersede PredictProtein, the first internet server making AI protein predictions available in 1992. Given a protein sequence as input, LambdaPP provides easily accessible visualizations of protein 3D structure, along with predictions at the protein level (GeneOntology, subcellular location), and the residue level (binding to metal ions, small molecules, and nucleotides; conservation; intrinsic disorder; secondary structure; alpha‐helical and beta‐barrel transmembrane segments; signal‐peptides; variant effect) in seconds. The structure prediction provided by LambdaPP—leveraging ColabFold and computed in minutes—is based on MMseqs2 multiple sequence alignments. All other feature prediction methods are based on the pLM ProtT5. Queried by a protein sequence, LambdaPP computes protein and residue predictions almost instantly for various phenotypes, including 3D structure and aspects of protein function. LambdaPP is freely available for everyone to use under embed.predictprotein.org, the interactive results for the case study can be found under https://embed.predictprotein.org/o/Q9NZC2. The frontend of LambdaPP can be found on GitHub (github.com/sacdallago/embed.predictprotein.org), and can be freely used and distributed under the academic free use license (AFL‐2). For high‐throughput applications, all methods can be executed locally via the bio‐embeddings (bioembeddings.com) python package, or docker image at ghcr.io/bioembeddings/bio_embeddings, which also includes the backend of LambdaPP. John Wiley & Sons, Inc. 2023-01-01 /pmc/articles/PMC9793974/ /pubmed/36454227 http://dx.doi.org/10.1002/pro.4524 Text en © 2022 The Authors. Protein Science published by Wiley Periodicals LLC on behalf of The Protein Society. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Tools for Protein Science
Olenyi, Tobias
Marquet, Céline
Heinzinger, Michael
Kröger, Benjamin
Nikolova, Tiha
Bernhofer, Michael
Sändig, Philip
Schütze, Konstantin
Littmann, Maria
Mirdita, Milot
Steinegger, Martin
Dallago, Christian
Rost, Burkhard
LambdaPP: Fast and accessible protein‐specific phenotype predictions
title LambdaPP: Fast and accessible protein‐specific phenotype predictions
title_full LambdaPP: Fast and accessible protein‐specific phenotype predictions
title_fullStr LambdaPP: Fast and accessible protein‐specific phenotype predictions
title_full_unstemmed LambdaPP: Fast and accessible protein‐specific phenotype predictions
title_short LambdaPP: Fast and accessible protein‐specific phenotype predictions
title_sort lambdapp: fast and accessible protein‐specific phenotype predictions
topic Tools for Protein Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793974/
https://www.ncbi.nlm.nih.gov/pubmed/36454227
http://dx.doi.org/10.1002/pro.4524
work_keys_str_mv AT olenyitobias lambdappfastandaccessibleproteinspecificphenotypepredictions
AT marquetceline lambdappfastandaccessibleproteinspecificphenotypepredictions
AT heinzingermichael lambdappfastandaccessibleproteinspecificphenotypepredictions
AT krogerbenjamin lambdappfastandaccessibleproteinspecificphenotypepredictions
AT nikolovatiha lambdappfastandaccessibleproteinspecificphenotypepredictions
AT bernhofermichael lambdappfastandaccessibleproteinspecificphenotypepredictions
AT sandigphilip lambdappfastandaccessibleproteinspecificphenotypepredictions
AT schutzekonstantin lambdappfastandaccessibleproteinspecificphenotypepredictions
AT littmannmaria lambdappfastandaccessibleproteinspecificphenotypepredictions
AT mirditamilot lambdappfastandaccessibleproteinspecificphenotypepredictions
AT steineggermartin lambdappfastandaccessibleproteinspecificphenotypepredictions
AT dallagochristian lambdappfastandaccessibleproteinspecificphenotypepredictions
AT rostburkhard lambdappfastandaccessibleproteinspecificphenotypepredictions