Cargando…
The combined effect of surface water and groundwater on environmental heterogeneity reveals the basis of beta diversity pattern in desert oasis communities
Beta diversity indicates the species turnover with respect to a particular environmental gradient. It is crucial for understanding biodiversity maintenance mechanisms and for prescribing conservation measures. In this study, we aimed to reveal the drivers of beta diversity patterns in desert hinterl...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9794059/ https://www.ncbi.nlm.nih.gov/pubmed/36574442 http://dx.doi.org/10.1371/journal.pone.0279704 |
_version_ | 1784859956507312128 |
---|---|
author | Shi, Haobo Shi, Qingdong Li, Hao Zhou, Xiaolong Dai, Yue Kahaer, Yasenjiang Wan, Yanbo Peng, Lei |
author_facet | Shi, Haobo Shi, Qingdong Li, Hao Zhou, Xiaolong Dai, Yue Kahaer, Yasenjiang Wan, Yanbo Peng, Lei |
author_sort | Shi, Haobo |
collection | PubMed |
description | Beta diversity indicates the species turnover with respect to a particular environmental gradient. It is crucial for understanding biodiversity maintenance mechanisms and for prescribing conservation measures. In this study, we aimed to reveal the drivers of beta diversity patterns in desert hinterland oasis communities by establishing three types of surface water disturbance and groundwater depth gradients. The results indicated that the dominant factor driving the beta diversity pattern within the same gradient shifted from soil organic matter to pH, as groundwater depth became shallower and surface water disturbance increased. Among the different gradients, surface water disturbance can have important effects on communities where original water resource conditions are extremely scarce. Under the premise that all habitats are disturbed by low surface water, differences in groundwater depth dominated the shifts in the community species composition. However, when groundwater depth in each habitat was shallow, surface water disturbance had little effect on the change in species composition. For the two components of beta diversity, the main drivers of species turnover pattern was the unique effects of surface water disturbance and soil environmental differences, and the main driver of species nestedness pattern was the common effect of multiple environmental pressures. The results of this study suggest that increasing the disturbance of surface water in dry areas with the help of river flooding will help in promoting vegetation restoration and alleviating the degradation of oases. They also confirm that surface water and groundwater mutually drive the establishment of desert oasis communities. Equal focus on both factors can contribute to the rational ecological recovery of dryland oases and prevent biodiversity loss. |
format | Online Article Text |
id | pubmed-9794059 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-97940592022-12-28 The combined effect of surface water and groundwater on environmental heterogeneity reveals the basis of beta diversity pattern in desert oasis communities Shi, Haobo Shi, Qingdong Li, Hao Zhou, Xiaolong Dai, Yue Kahaer, Yasenjiang Wan, Yanbo Peng, Lei PLoS One Research Article Beta diversity indicates the species turnover with respect to a particular environmental gradient. It is crucial for understanding biodiversity maintenance mechanisms and for prescribing conservation measures. In this study, we aimed to reveal the drivers of beta diversity patterns in desert hinterland oasis communities by establishing three types of surface water disturbance and groundwater depth gradients. The results indicated that the dominant factor driving the beta diversity pattern within the same gradient shifted from soil organic matter to pH, as groundwater depth became shallower and surface water disturbance increased. Among the different gradients, surface water disturbance can have important effects on communities where original water resource conditions are extremely scarce. Under the premise that all habitats are disturbed by low surface water, differences in groundwater depth dominated the shifts in the community species composition. However, when groundwater depth in each habitat was shallow, surface water disturbance had little effect on the change in species composition. For the two components of beta diversity, the main drivers of species turnover pattern was the unique effects of surface water disturbance and soil environmental differences, and the main driver of species nestedness pattern was the common effect of multiple environmental pressures. The results of this study suggest that increasing the disturbance of surface water in dry areas with the help of river flooding will help in promoting vegetation restoration and alleviating the degradation of oases. They also confirm that surface water and groundwater mutually drive the establishment of desert oasis communities. Equal focus on both factors can contribute to the rational ecological recovery of dryland oases and prevent biodiversity loss. Public Library of Science 2022-12-27 /pmc/articles/PMC9794059/ /pubmed/36574442 http://dx.doi.org/10.1371/journal.pone.0279704 Text en © 2022 Shi et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Shi, Haobo Shi, Qingdong Li, Hao Zhou, Xiaolong Dai, Yue Kahaer, Yasenjiang Wan, Yanbo Peng, Lei The combined effect of surface water and groundwater on environmental heterogeneity reveals the basis of beta diversity pattern in desert oasis communities |
title | The combined effect of surface water and groundwater on environmental heterogeneity reveals the basis of beta diversity pattern in desert oasis communities |
title_full | The combined effect of surface water and groundwater on environmental heterogeneity reveals the basis of beta diversity pattern in desert oasis communities |
title_fullStr | The combined effect of surface water and groundwater on environmental heterogeneity reveals the basis of beta diversity pattern in desert oasis communities |
title_full_unstemmed | The combined effect of surface water and groundwater on environmental heterogeneity reveals the basis of beta diversity pattern in desert oasis communities |
title_short | The combined effect of surface water and groundwater on environmental heterogeneity reveals the basis of beta diversity pattern in desert oasis communities |
title_sort | combined effect of surface water and groundwater on environmental heterogeneity reveals the basis of beta diversity pattern in desert oasis communities |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9794059/ https://www.ncbi.nlm.nih.gov/pubmed/36574442 http://dx.doi.org/10.1371/journal.pone.0279704 |
work_keys_str_mv | AT shihaobo thecombinedeffectofsurfacewaterandgroundwateronenvironmentalheterogeneityrevealsthebasisofbetadiversitypatternindesertoasiscommunities AT shiqingdong thecombinedeffectofsurfacewaterandgroundwateronenvironmentalheterogeneityrevealsthebasisofbetadiversitypatternindesertoasiscommunities AT lihao thecombinedeffectofsurfacewaterandgroundwateronenvironmentalheterogeneityrevealsthebasisofbetadiversitypatternindesertoasiscommunities AT zhouxiaolong thecombinedeffectofsurfacewaterandgroundwateronenvironmentalheterogeneityrevealsthebasisofbetadiversitypatternindesertoasiscommunities AT daiyue thecombinedeffectofsurfacewaterandgroundwateronenvironmentalheterogeneityrevealsthebasisofbetadiversitypatternindesertoasiscommunities AT kahaeryasenjiang thecombinedeffectofsurfacewaterandgroundwateronenvironmentalheterogeneityrevealsthebasisofbetadiversitypatternindesertoasiscommunities AT wanyanbo thecombinedeffectofsurfacewaterandgroundwateronenvironmentalheterogeneityrevealsthebasisofbetadiversitypatternindesertoasiscommunities AT penglei thecombinedeffectofsurfacewaterandgroundwateronenvironmentalheterogeneityrevealsthebasisofbetadiversitypatternindesertoasiscommunities AT shihaobo combinedeffectofsurfacewaterandgroundwateronenvironmentalheterogeneityrevealsthebasisofbetadiversitypatternindesertoasiscommunities AT shiqingdong combinedeffectofsurfacewaterandgroundwateronenvironmentalheterogeneityrevealsthebasisofbetadiversitypatternindesertoasiscommunities AT lihao combinedeffectofsurfacewaterandgroundwateronenvironmentalheterogeneityrevealsthebasisofbetadiversitypatternindesertoasiscommunities AT zhouxiaolong combinedeffectofsurfacewaterandgroundwateronenvironmentalheterogeneityrevealsthebasisofbetadiversitypatternindesertoasiscommunities AT daiyue combinedeffectofsurfacewaterandgroundwateronenvironmentalheterogeneityrevealsthebasisofbetadiversitypatternindesertoasiscommunities AT kahaeryasenjiang combinedeffectofsurfacewaterandgroundwateronenvironmentalheterogeneityrevealsthebasisofbetadiversitypatternindesertoasiscommunities AT wanyanbo combinedeffectofsurfacewaterandgroundwateronenvironmentalheterogeneityrevealsthebasisofbetadiversitypatternindesertoasiscommunities AT penglei combinedeffectofsurfacewaterandgroundwateronenvironmentalheterogeneityrevealsthebasisofbetadiversitypatternindesertoasiscommunities |