Cargando…
Interpretable decision trees through MaxSAT
We present an approach to improve the accuracy-interpretability trade-off of Machine Learning (ML) Decision Trees (DTs). In particular, we apply Maximum Satisfiability technology to compute Minimum Pure DTs (MPDTs). We improve the runtime of previous approaches and, show that these MPDTs can outperf...
Autores principales: | Alòs, Josep, Ansótegui, Carlos, Torres, Eduard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9794111/ https://www.ncbi.nlm.nih.gov/pubmed/36590759 http://dx.doi.org/10.1007/s10462-022-10377-0 |
Ejemplares similares
-
Incomplete MaxSAT approaches for combinatorial testing
por: Ansótegui, Carlos, et al.
Publicado: (2022) -
MaxSAT Resolution and Subcube Sums
por: Filmus, Yuval, et al.
Publicado: (2020) -
Abstract Cores in Implicit Hitting Set MaxSat Solving
por: Berg, Jeremias, et al.
Publicado: (2020) -
Modeling and solving staff scheduling with partial weighted maxSAT
por: Demirović, Emir, et al.
Publicado: (2017) -
A continuous-time MaxSAT solver with high analog performance
por: Molnár, Botond, et al.
Publicado: (2018)