Cargando…
The power of transfer learning in agricultural applications: AgriNet
Advances in deep learning and transfer learning have paved the way for various automation classification tasks in agriculture, including plant diseases, pests, weeds, and plant species detection. However, agriculture automation still faces various challenges, such as the limited size of datasets and...
Autores principales: | Al Sahili, Zahraa, Awad, Mariette |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9794606/ https://www.ncbi.nlm.nih.gov/pubmed/36589063 http://dx.doi.org/10.3389/fpls.2022.992700 |
Ejemplares similares
-
Deep-agriNet: a lightweight attention-based encoder-decoder framework for crop identification using multispectral images
por: Hu, Yimin, et al.
Publicado: (2023) -
AgriPest-YOLO: A rapid light-trap agricultural pest detection method based on deep learning
por: Zhang, Wei, et al.
Publicado: (2022) -
Editorial: The Brassicaceae—Agri-Horticultural and Environmental Perspectives
por: Anjum, Naser A., et al.
Publicado: (2018) -
Integrated Approach of Agri-nanotechnology: Challenges and Future Trends
por: Mishra, Sandhya, et al.
Publicado: (2017) -
Editorial: Digital innovations in sustainable agri-food systems
por: Amoriello, Tiziana, et al.
Publicado: (2023)