Cargando…

Rapid One-Pot Microwave Assisted Green Synthesis Nitrogen Doped Carbon Quantum Dots as Fluorescent Precursor for Estimation of Modafinil as Post-Covid Neurological Drug in Human Plasma with Greenness Assessments

The neuro-stimulant anti-narcoleptic drug as modafinil (MOD) is used to treatment neurological conditions caused by COVID-19. MOD was used to treatment narcolepsy, shift-work sleep disorder, and obstructive sleep apnea-related sleepiness. So, an innovative, quick, economical, selective, and ecologic...

Descripción completa

Detalles Bibliográficos
Autores principales: Salman, Baher I., Hassan, Ahmed I., Hassan, Yasser F., Saraya, Roshdy E., Batakoushy, Hany A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9795147/
https://www.ncbi.nlm.nih.gov/pubmed/36576682
http://dx.doi.org/10.1007/s10895-022-03128-5
Descripción
Sumario:The neuro-stimulant anti-narcoleptic drug as modafinil (MOD) is used to treatment neurological conditions caused by COVID-19. MOD was used to treatment narcolepsy, shift-work sleep disorder, and obstructive sleep apnea-related sleepiness. So, an innovative, quick, economical, selective, and ecologically friendly procedure was carried out. A highly sensitive N@CQDs technique was created from green Eruca sativa leaves in about 4 min using microwave synthesis at 700 w. The quantum yield of the synthesized N@CQDs was found to be 41.39%. By increasing the concentration of MOD, the quantum dots' fluorescence intensity was gradually quenched. After being excited at 445 nm, the fluorescence reading was recorded at 515 nm. The linear range was found to be in the range 50 – 700 ng mL(−1) with lower limit of quantitation (LOQ) equal to 45.00 ng mL(−1). The current method was fully validated and bio analytically according to (US-FDA and ICH) guidelines. Full characterization of the N@CQDs has been conducted by high resolution transmission electron microscope (HRTEM), Zeta potential measurement, fluorescence, UV–VIS, and FTIR spectroscopy. Various experimental variables including pH, QDs concentration and the reaction time were optimized. The proposed study is simply implemented for the therapeutic drug monitoring system (TDMS) and various clinical laboratories for further pharmacokinetic research. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10895-022-03128-5.