Cargando…
Tandem deep learning and logistic regression models to optimize hypertrophic cardiomyopathy detection in routine clinical practice
BACKGROUND: An electrocardiogram (ECG)-based artificial intelligence (AI) algorithm has shown good performance in detecting hypertrophic cardiomyopathy (HCM). However, its application in routine clinical practice may be challenging owing to the low disease prevalence and potentially high false-posit...
Autores principales: | Maanja, Maren, Noseworthy, Peter A., Geske, Jeffrey B., Ackerman, Michael J., Arruda-Olson, Adelaide M., Ommen, Steve R., Attia, Zachi I., Friedman, Paul A., Siontis, Konstantinos C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9795257/ https://www.ncbi.nlm.nih.gov/pubmed/36589312 http://dx.doi.org/10.1016/j.cvdhj.2022.10.002 |
Ejemplares similares
-
Natural language processing of implantable cardioverter-defibrillator reports in hypertrophic cardiomyopathy: A paradigm for longitudinal device follow-up
por: Siontis, Konstantinos C., et al.
Publicado: (2021) -
Sex, Survival, and Cardiomyopathy: Differences Between Men and Women With Hypertrophic Cardiomyopathy
por: Siontis, Konstantinos C., et al.
Publicado: (2019) -
Conversion of left atrial volume to diameter for automated estimation of sudden cardiac death risk in hypertrophic cardiomyopathy
por: Bhopalwala, Huzefa, et al.
Publicado: (2020) -
Natural language processing for identification of hypertrophic cardiomyopathy patients from cardiac magnetic resonance reports
por: Dewaswala, Nakeya, et al.
Publicado: (2022) -
Atrial Fibrillation in Hypertrophic Cardiomyopathy: Prevalence, Clinical Correlations, and Mortality in a Large High‐Risk Population
por: Siontis, Konstantinos C., et al.
Publicado: (2014)