Cargando…
Machine learning predicting mortality in sarcoidosis patients admitted for acute heart failure
BACKGROUND: Sarcoidosis with cardiac involvement, although rare, has a worse prognosis than sarcoidosis involving other organ systems. OBJECTIVE: We used a large dataset to train machine learning models to predict in-hospital mortality among sarcoidosis patients admitted with heart failure (HF). MET...
Autores principales: | Dai, Qiying, Sherif, Akil A., Jin, Chengyue, Chen, Yongbin, Cai, Peng, Li, Pengyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9795270/ https://www.ncbi.nlm.nih.gov/pubmed/36589310 http://dx.doi.org/10.1016/j.cvdhj.2022.08.001 |
Ejemplares similares
-
Cardiac Sarcoidosis-Induced Heart Failure
por: Figart, Michael W, et al.
Publicado: (2021) -
Predicting Physiological Response in Heart Failure Management: A Graph Representation Learning Approach using Electronic Health Records
por: Chowdhury, Shaika, et al.
Publicado: (2023) -
A Novel Composite Indicator of Predicting Mortality Risk for Heart Failure Patients With Diabetes Admitted to Intensive Care Unit Based on Machine Learning
por: Yang, Boshen, et al.
Publicado: (2022) -
Cardiac Sarcoidosis Presenting as Acute Progressive Heart Failure with Abdominal Lymphadenopathy
por: Oka, Satoshi, et al.
Publicado: (2017) -
Takotsubo syndrome and respiratory diseases: a systematic review
por: Li, Pengyang, et al.
Publicado: (2022)