Cargando…

A deep learning framework integrating MRI image preprocessing methods for brain tumor segmentation and classification

Glioma grading is critical in treatment planning and prognosis. This study aims to address this issue through MRI-based classification to develop an accurate model for glioma diagnosis. Here, we employed a deep learning pipeline with three essential steps: (1) MRI images were segmented using preproc...

Descripción completa

Detalles Bibliográficos
Autores principales: Dang, Khiet, Vo, Toi, Ngo, Lua, Ha, Huong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9795279/
https://www.ncbi.nlm.nih.gov/pubmed/36590099
http://dx.doi.org/10.1016/j.ibneur.2022.10.014
Descripción
Sumario:Glioma grading is critical in treatment planning and prognosis. This study aims to address this issue through MRI-based classification to develop an accurate model for glioma diagnosis. Here, we employed a deep learning pipeline with three essential steps: (1) MRI images were segmented using preprocessing approaches and UNet architecture, (2) brain tumor regions were extracted using segmentation, then (3) high-grade gliomas and low-grade gliomas were classified using the VGG and GoogleNet implementations. Among the additional preprocessing techniques used in conjunction with the segmentation task, the combination of data augmentation and Window Setting Optimization was found to be the most effective tool, resulting in the Dice coefficient of 0.82, 0.91, and 0.72 for enhancing tumor, whole tumor, and tumor core, respectively. While most of the proposed models achieve comparable accuracies of about 93 % on the testing dataset, the pipeline of VGG combined with UNet segmentation obtains the highest accuracy of 97.44 %. In conclusion, the presented architecture illustrates a realistic model for detecting gliomas; moreover, it emphasizes the significance of data augmentation and segmentation in improving model performance.