Cargando…
A deep learning framework integrating MRI image preprocessing methods for brain tumor segmentation and classification
Glioma grading is critical in treatment planning and prognosis. This study aims to address this issue through MRI-based classification to develop an accurate model for glioma diagnosis. Here, we employed a deep learning pipeline with three essential steps: (1) MRI images were segmented using preproc...
Autores principales: | Dang, Khiet, Vo, Toi, Ngo, Lua, Ha, Huong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9795279/ https://www.ncbi.nlm.nih.gov/pubmed/36590099 http://dx.doi.org/10.1016/j.ibneur.2022.10.014 |
Ejemplares similares
-
Hepatic vessels segmentation using deep learning and preprocessing enhancement
por: Alirr, Omar Ibrahim, et al.
Publicado: (2023) -
Deep‐Learning‐Based Preprocessing for Quantitative Myocardial Perfusion MRI
por: Scannell, Cian M., et al.
Publicado: (2019) -
Integrated fMRI Preprocessing Framework Using Extended Kalman Filter for Estimation of Slice-Wise Motion
por: Pinsard, Basile, et al.
Publicado: (2018) -
Extensive T1-weighted MRI Preprocessing Improves Generalizability of Deep Brain Age Prediction Models
por: Dular, Lara, et al.
Publicado: (2023) -
Shallow networks run deep: Peripheral preprocessing facilitates odor classification
por: Puri, Palka, et al.
Publicado: (2023)