Cargando…

Fingolimod increases parvalbumin-positive neurons in adult mice

In recent years, it has been shown that central nervous system agents, such as antidepressants and antiepileptic drugs, reopen a critical period in mature animals. Fingolimod, which is used for the treatment of multiple sclerosis, also restores neuroplasticity. In this study, we investigated the eff...

Descripción completa

Detalles Bibliográficos
Autores principales: Ueno, Hiroshi, Takahashi, Yu, Murakami, Shinji, Wani, Kenta, Matsumoto, Yosuke, Okamoto, Motoi, Ishihara, Takeshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9795291/
https://www.ncbi.nlm.nih.gov/pubmed/36590091
http://dx.doi.org/10.1016/j.ibneur.2022.06.005
Descripción
Sumario:In recent years, it has been shown that central nervous system agents, such as antidepressants and antiepileptic drugs, reopen a critical period in mature animals. Fingolimod, which is used for the treatment of multiple sclerosis, also restores neuroplasticity. In this study, we investigated the effects of parvalbumin (PV)-positive neurons and perineuronal nets (PNN) on fingolimod administration with respect to neuroplasticity. Fingolimod was chronically administered intraperitoneally to mature mice. PV-positive neurons and PNN in the hippocampus, prefrontal cortex, and somatosensory cortex were analyzed. An increase in PV-positive neurons was observed in the hippocampus, prefrontal cortex, and somatosensory cortex of the fingolimod-treated mice. An increase in Wisteria floribunda agglutinin-positive PNN was confirmed in mice treated with fingolimod in the somatosensory cortex only. Fingolimod increased the density of PV-positive neurons in the brains of mature mice. The results indicate that fingolimod may change the critical period in mature animals.