Cargando…
Fisheye transformation enhances deep-learning-based single-cell phenotyping by including cellular microenvironment
Incorporating information about the surroundings can have a significant impact on successfully determining the class of an object. This is of particular interest when determining the phenotypes of cells, for example, in the context of high-throughput screens. We hypothesized that an ideal approach w...
Autores principales: | Toth, Timea, Bauer, David, Sukosd, Farkas, Horvath, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9795324/ https://www.ncbi.nlm.nih.gov/pubmed/36590690 http://dx.doi.org/10.1016/j.crmeth.2022.100339 |
Ejemplares similares
-
Environmental properties of cells improve machine learning-based phenotype recognition accuracy
por: Toth, Timea, et al.
Publicado: (2018) -
Design of a Miniaturized Wide-Angle Fisheye Lens Based on Deep Learning and Optimization Techniques
por: Tien, Chuen-Lin, et al.
Publicado: (2022) -
Road User Position and Speed Estimation via Deep Learning from Calibrated Fisheye Videos
por: Berviller, Yves, et al.
Publicado: (2023) -
Robust Keypoint Detection and Matching on Fisheye Images by Self-Supervised Learning
por: Tian, Wei, et al.
Publicado: (2022) -
Datasets for face and object detection in fisheye images
por: Fu, Jianglin, et al.
Publicado: (2019)