Cargando…
Machine learning prediction of side effects for drugs in clinical trials
Early and accurate detection of side effects is critical for the clinical success of drugs under development. Here, we aim to predict unknown side effects for drugs with a small number of side effects identified in randomized controlled clinical trials. Our machine learning framework, the geometric...
Autores principales: | Galeano, Diego, Paccanaro, Alberto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9795366/ https://www.ncbi.nlm.nih.gov/pubmed/36590692 http://dx.doi.org/10.1016/j.crmeth.2022.100358 |
Ejemplares similares
-
Predicting the frequencies of drug side effects
por: Galeano, Diego, et al.
Publicado: (2020) -
Machine learning and network medicine approaches for drug repositioning for COVID-19
por: Santos, Suzana de Siqueira, et al.
Publicado: (2021) -
Integrative relational machine-learning for understanding drug side-effect profiles
por: Bresso, Emmanuel, et al.
Publicado: (2013) -
An extensive survey on the use of supervised machine learning techniques in the past two decades for prediction of drug side effects
por: Das, Pranab, et al.
Publicado: (2023) -
Predicting drug side effects by multi-label learning and ensemble learning
por: Zhang, Wen, et al.
Publicado: (2015)