Cargando…
Model for Predicting In-Hospital Mortality of Physical Trauma Patients Using Artificial Intelligence Techniques: Nationwide Population-Based Study in Korea
BACKGROUND: Physical trauma–related mortality places a heavy burden on society. Estimating the mortality risk in physical trauma patients is crucial to enhance treatment efficiency and reduce this burden. The most popular and accurate model is the Injury Severity Score (ISS), which is based on the A...
Autores principales: | Lee, Seungseok, Kang, Wu Seong, Seo, Sanghyun, Kim, Do Wan, Ko, Hoon, Kim, Joongsuck, Lee, Seonghwa, Lee, Jinseok |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9795391/ https://www.ncbi.nlm.nih.gov/pubmed/36512392 http://dx.doi.org/10.2196/43757 |
Ejemplares similares
-
An Artificial Intelligence Model for Predicting Trauma Mortality Among Emergency Department Patients in South Korea: Retrospective Cohort Study
por: Lee, Seungseok, et al.
Publicado: (2023) -
Prediction and Feature Importance Analysis for Severity of COVID-19 in South Korea Using Artificial Intelligence: Model Development and Validation
por: Chung, Heewon, et al.
Publicado: (2021) -
Artificial intelligence to predict in-hospital mortality using novel anatomical injury score
por: Kang, Wu Seong, et al.
Publicado: (2021) -
An Artificial Intelligence Model to Predict the Mortality of COVID-19 Patients at Hospital Admission Time Using Routine Blood Samples: Development and Validation of an Ensemble Model
por: Ko, Hoon, et al.
Publicado: (2020) -
Stakeholders’ Requirements for Artificial Intelligence for Healthcare in Korea
por: Yu, Jae Yong, et al.
Publicado: (2022)