Cargando…

miR-4443 promotes radiation resistance of esophageal squamous cell carcinoma via targeting PTPRJ

BACKGROUND: Radiotherapy is one of the main treatments for esophageal squamous cell carcinoma (ESCC), but its efficacy is limited by radioresistance. MicroRNAs play a crucial role in posttranscriptional regulation, which is linked to the cancer response to radiation. METHODS: We successfully establi...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Xiaobo, Liu, Xiaoxiao, Huang, Shan, Hao, Yu, Pan, Shupei, Ke, Yue, Guo, Wei, Wang, Yuchen, Ma, Hongbing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9795664/
https://www.ncbi.nlm.nih.gov/pubmed/36578050
http://dx.doi.org/10.1186/s12967-022-03818-5
Descripción
Sumario:BACKGROUND: Radiotherapy is one of the main treatments for esophageal squamous cell carcinoma (ESCC), but its efficacy is limited by radioresistance. MicroRNAs play a crucial role in posttranscriptional regulation, which is linked to the cancer response to radiation. METHODS: We successfully established a radioresistant cell line model by using fractionated irradiation. qRT-PCR was adopted to detect the expression of miR-4443 in human normal esophageal cell lines, tumor cells, and radioresistant cells. Next, CCK-8, colony formation, apoptosis, and cell cycle assays were used to assess the biological effect of miR-4443. Weighted gene coexpression network analysis (WGCNA) was performed to identify potential radiosensitivity-related genes. Additionally, we predicted the probable targets of the miRNA using bioinformatic methods and confirmed them using Western blot. RESULTS: miR-4443 was significantly upregulated in radioresistant ESCC cells. Enhancement of miR-4443 further decreased the radiosensitivity of ESCC cells, while inhibition of miR-4443 increased the radiosensitivity of ESCC cells. Notably, miR-4443 modulated radiosensitivity by influencing DNA damage repair, apoptosis, and G2 cycle arrest. By using WGCNA and experimental validation, we identified PTPRJ as a key target for miRNA-4443 to regulate radiosensitivity. The effects of miR-4443 overexpression or inhibition could be reversed by increasing or decreasing PTPRJ expression. CONCLUSION: In this study, miR-4443 is found to promote radiotherapy resistance in ESCC cells by regulating PTPRJ expression, which provides a new perspective and clue to alleviate radioresistance. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12967-022-03818-5.