Cargando…

Kampo formula hochu-ekki-to (Bu-Zhong-Yi-Qi-Tang, TJ-41) ameliorates muscle atrophy by modulating atrogenes and AMPK in vivo and in vitro

BACKGROUND: Muscle disuse results in loss of skeletal muscle mass and function. Hochu-ekki-to (TJ-41; Bu-Zhong-Yi-Qi-Tang in Chinese) is an herbal medicinal formulation used to treat patients with frailty, fatigue and appetite loss. It has been suggested that two atrogenes, atrogin-1 and muscle Ring...

Descripción completa

Detalles Bibliográficos
Autores principales: Yakabe, Mitsutaka, Hosoi, Tatsuya, Sasakawa, Hiroko, Akishita, Masahiro, Ogawa, Sumito
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9795672/
https://www.ncbi.nlm.nih.gov/pubmed/36578084
http://dx.doi.org/10.1186/s12906-022-03812-w
Descripción
Sumario:BACKGROUND: Muscle disuse results in loss of skeletal muscle mass and function. Hochu-ekki-to (TJ-41; Bu-Zhong-Yi-Qi-Tang in Chinese) is an herbal medicinal formulation used to treat patients with frailty, fatigue and appetite loss. It has been suggested that two atrogenes, atrogin-1 and muscle Ring finger 1 (MuRF1), are ubiquitin ligases involved in disuse-induced muscle atrophy and that 5’ adenosine monophosphate-activated protein kinase (AMPK) is involved in skeletal muscle metabolism. Effects of TJ-41 on disuse-induced muscle atrophy are unclear. METHODS: We subjected differentiated C2C12 myotubes to serum starvation, then examined the effects of TJ-41 on atrogenes expression, AMPK activity and the morphology of the myotubes. Male C57BL/6J mice were subjected to tail-suspension to induce hindlimb atrophy. We administered TJ-41 by gavage to the control group and the tail-suspended group, then examined the effects of TJ-41 on atrogene expression, AMPK activity, and the muscle weight. RESULTS: Serum starvation induced the expression of atrogin-1 and MuRF1 in C2C12 myotubes, and TJ-41 significantly downregulated the expression of atrogin-1. Tail-suspension of the mice induced the expression of atrogin-1 and MuRF1 in skeletal muscle as well as its muscle atrophy, whereas TJ-41 treatment significantly downregulated the expression of atrogin-1 and ameliorated the loss of the muscle weight. In addition, TJ-41 also activated AMPK and inactivated Akt and mTOR in skeletal muscle in vivo. CONCLUSION: TJ-41 inhibited atrogenes in an Akt-independent manner as well as activating AMPK in skeletal muscles in vivo, further implying the therapeutic potential of TJ-41 against disuse-induced muscle atrophy and other atrogenes-dependent atrophic conditions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12906-022-03812-w.