Cargando…
Electrical stimulation through conductive scaffolds for cardiomyocyte tissue engineering: Systematic review and narrative synthesis
Electrical conductivity is of great significance to cardiac tissue engineering and permits the use of electrical stimulation in mimicking cardiac pacing. The development of biomaterials for tissue engineering can incorporate physical properties that are uncommon to standard cell culture and can faci...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9796457/ https://www.ncbi.nlm.nih.gov/pubmed/35676231 http://dx.doi.org/10.1111/nyas.14812 |
_version_ | 1784860489905340416 |
---|---|
author | Scott, Louie Elídóttir, Katrín Jeevaratnam, Kamalan Jurewicz, Izabela Lewis, Rebecca |
author_facet | Scott, Louie Elídóttir, Katrín Jeevaratnam, Kamalan Jurewicz, Izabela Lewis, Rebecca |
author_sort | Scott, Louie |
collection | PubMed |
description | Electrical conductivity is of great significance to cardiac tissue engineering and permits the use of electrical stimulation in mimicking cardiac pacing. The development of biomaterials for tissue engineering can incorporate physical properties that are uncommon to standard cell culture and can facilitate improved cardiomyocyte function. In this review, the PICOT question asks, “How has the application of external electrical stimulation in conductive scaffolds for tissue engineering affected cardiomyocyte behavior in in vitro cell culture?” The Preferred Reporting Items for Systematic Reviews and Meta‐Analysis guidelines, with predetermined inclusion and quality appraisal criteria, were used to assess publications from PubMed, Web of Science, and Scopus. Results revealed carbon nanotubes to be the most common conductive agent in biomaterials and rodent‐sourced cell types as the most common cardiomyocytes used. To assess cardiomyocytes, immunofluorescence was used most often, utilizing proteins, such as connexin 43, cardiac α‐actinin, and cardiac troponins. It was determined that the modal average stimulation protocol comprised 1–3 V square biphasic 50‐ms pulses at 1 Hz, applied toward the end of cell culture. The addition of electrical stimulation to in vitro culture has exemplified it as a powerful tool for cardiac tissue engineering and brings researchers closer to creating optimal artificial cardiac tissue constructs. |
format | Online Article Text |
id | pubmed-9796457 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-97964572022-12-30 Electrical stimulation through conductive scaffolds for cardiomyocyte tissue engineering: Systematic review and narrative synthesis Scott, Louie Elídóttir, Katrín Jeevaratnam, Kamalan Jurewicz, Izabela Lewis, Rebecca Ann N Y Acad Sci Reviews Electrical conductivity is of great significance to cardiac tissue engineering and permits the use of electrical stimulation in mimicking cardiac pacing. The development of biomaterials for tissue engineering can incorporate physical properties that are uncommon to standard cell culture and can facilitate improved cardiomyocyte function. In this review, the PICOT question asks, “How has the application of external electrical stimulation in conductive scaffolds for tissue engineering affected cardiomyocyte behavior in in vitro cell culture?” The Preferred Reporting Items for Systematic Reviews and Meta‐Analysis guidelines, with predetermined inclusion and quality appraisal criteria, were used to assess publications from PubMed, Web of Science, and Scopus. Results revealed carbon nanotubes to be the most common conductive agent in biomaterials and rodent‐sourced cell types as the most common cardiomyocytes used. To assess cardiomyocytes, immunofluorescence was used most often, utilizing proteins, such as connexin 43, cardiac α‐actinin, and cardiac troponins. It was determined that the modal average stimulation protocol comprised 1–3 V square biphasic 50‐ms pulses at 1 Hz, applied toward the end of cell culture. The addition of electrical stimulation to in vitro culture has exemplified it as a powerful tool for cardiac tissue engineering and brings researchers closer to creating optimal artificial cardiac tissue constructs. John Wiley and Sons Inc. 2022-06-08 2022-09 /pmc/articles/PMC9796457/ /pubmed/35676231 http://dx.doi.org/10.1111/nyas.14812 Text en © 2022 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals LLC on behalf of New York Academy of Sciences. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Reviews Scott, Louie Elídóttir, Katrín Jeevaratnam, Kamalan Jurewicz, Izabela Lewis, Rebecca Electrical stimulation through conductive scaffolds for cardiomyocyte tissue engineering: Systematic review and narrative synthesis |
title | Electrical stimulation through conductive scaffolds for cardiomyocyte tissue engineering: Systematic review and narrative synthesis |
title_full | Electrical stimulation through conductive scaffolds for cardiomyocyte tissue engineering: Systematic review and narrative synthesis |
title_fullStr | Electrical stimulation through conductive scaffolds for cardiomyocyte tissue engineering: Systematic review and narrative synthesis |
title_full_unstemmed | Electrical stimulation through conductive scaffolds for cardiomyocyte tissue engineering: Systematic review and narrative synthesis |
title_short | Electrical stimulation through conductive scaffolds for cardiomyocyte tissue engineering: Systematic review and narrative synthesis |
title_sort | electrical stimulation through conductive scaffolds for cardiomyocyte tissue engineering: systematic review and narrative synthesis |
topic | Reviews |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9796457/ https://www.ncbi.nlm.nih.gov/pubmed/35676231 http://dx.doi.org/10.1111/nyas.14812 |
work_keys_str_mv | AT scottlouie electricalstimulationthroughconductivescaffoldsforcardiomyocytetissueengineeringsystematicreviewandnarrativesynthesis AT elidottirkatrin electricalstimulationthroughconductivescaffoldsforcardiomyocytetissueengineeringsystematicreviewandnarrativesynthesis AT jeevaratnamkamalan electricalstimulationthroughconductivescaffoldsforcardiomyocytetissueengineeringsystematicreviewandnarrativesynthesis AT jurewiczizabela electricalstimulationthroughconductivescaffoldsforcardiomyocytetissueengineeringsystematicreviewandnarrativesynthesis AT lewisrebecca electricalstimulationthroughconductivescaffoldsforcardiomyocytetissueengineeringsystematicreviewandnarrativesynthesis |