Cargando…
Semi‐supervised empirical Bayes group‐regularized factor regression
The features in a high‐dimensional biomedical prediction problem are often well described by low‐dimensional latent variables (or factors). We use this to include unlabeled features and additional information on the features when building a prediction model. Such additional feature information is of...
Autores principales: | Münch, Magnus M., van de Wiel, Mark A., van der Vaart, Aad W., Peeters, Carel F. W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9796498/ https://www.ncbi.nlm.nih.gov/pubmed/35730912 http://dx.doi.org/10.1002/bimj.202100105 |
Ejemplares similares
-
Adaptive group-regularized logistic elastic net regression
por: Münch, Magnus M, et al.
Publicado: (2019) -
A new robust Bayesian small area estimation via [Formula: see text] ‐stable model for estimating the proportion of athletic students in California
por: Zarei, Shaho, et al.
Publicado: (2021) -
Dirichlet composition distribution for compositional data with zero components: An application to fluorescence in situ hybridization (FISH) detection of chromosome
por: Tang, Man‐Lai, et al.
Publicado: (2021) -
A gentle tutorial on accelerated parameter and confidence interval estimation for hidden Markov models using Template Model Builder
por: Bacri, Timothée, et al.
Publicado: (2022) -
Common pitfalls in statistical analysis: Logistic regression
por: Ranganathan, Priya, et al.
Publicado: (2017)