Cargando…
Predicting residue‐specific qualities of individual protein models using residual neural networks and graph neural networks
The estimation of protein model accuracy (EMA) or model quality assessment (QA) is important for protein structure prediction. An accurate EMA algorithm can guide the refinement of models or pick the best model or best parts of models from a pool of predicted tertiary structures. We developed two no...
Autores principales: | Zhao, Chenguang, Liu, Tong, Wang, Zheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9796650/ https://www.ncbi.nlm.nih.gov/pubmed/35842895 http://dx.doi.org/10.1002/prot.26400 |
Ejemplares similares
-
PANDA2: protein function prediction using graph neural networks
por: Zhao, Chenguang, et al.
Publicado: (2022) -
Benchmarking Deep Networks for Predicting Residue-Specific Quality of Individual Protein Models in CASP11
por: Liu, Tong, et al.
Publicado: (2016) -
Multi-channel EEG emotion recognition through residual graph attention neural network
por: Chao, Hao, et al.
Publicado: (2023) -
Ligand Binding Prediction Using Protein Structure Graphs and Residual Graph Attention Networks
por: Pandey, Mohit, et al.
Publicado: (2022) -
Predicting protein-ligand binding residues with deep convolutional neural networks
por: Cui, Yifeng, et al.
Publicado: (2019)