Cargando…
Systematic comparison of machine learning algorithms to develop and validate predictive models for periodontitis
AIM: The aim of this study was to compare the validity of different machine learning algorithms to develop and validate predictive models for periodontitis. MATERIALS AND METHODS: Using national survey data from Taiwan (n = 3453) and the United States (n = 3685), predictors of periodontitis were ext...
Autores principales: | Bashir, Nasir Z., Rahman, Zahid, Chen, Sam Li‐Sheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9796669/ https://www.ncbi.nlm.nih.gov/pubmed/35781722 http://dx.doi.org/10.1111/jcpe.13692 |
Ejemplares similares
-
Comparison of the efficacy of periodontal prognostic systems in predicting tooth loss
por: Saydzai, Selai, et al.
Publicado: (2022) -
Intra‐ and inter‐examiner reliability in classifying periodontitis according to the 2018 classification of periodontal diseases
por: Abrahamian, Lory, et al.
Publicado: (2022) -
Discovery, validation, and diagnostic ability of multiple protein‐based biomarkers in saliva and gingival crevicular fluid to distinguish between health and periodontal diseases
por: Grant, Melissa M., et al.
Publicado: (2022) -
Oral characteristics in adult individuals with periodontal Ehlers‐Danlos syndrome
por: Lepperdinger, Ulrike, et al.
Publicado: (2022) -
Metabolic syndrome and periodontitis among adults: The 2018 Indonesia National Health Survey
por: Santoso, Cornelia Melinda Adi, et al.
Publicado: (2022)