Cargando…
Rank‐based Bayesian variable selection for genome‐wide transcriptomic analyses
Variable selection is crucial in high‐dimensional omics‐based analyses, since it is biologically reasonable to assume only a subset of non‐noisy features contributes to the data structures. However, the task is particularly hard in an unsupervised setting, and a priori ad hoc variable selection is s...
Autores principales: | Eliseussen, Emilie, Fleischer, Thomas, Vitelli, Valeria |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9796757/ https://www.ncbi.nlm.nih.gov/pubmed/35844145 http://dx.doi.org/10.1002/sim.9524 |
Ejemplares similares
-
Transcriptomic pan‐cancer analysis using rank‐based Bayesian inference
por: Vitelli, Valeria, et al.
Publicado: (2023) -
A Bayesian variable selection procedure to rank overlapping gene sets
por: Skarman, Axel, et al.
Publicado: (2012) -
Structured Genome-Wide Association Studies with Bayesian Hierarchical Variable Selection
por: Zhao, Yize, et al.
Publicado: (2019) -
Bayesian bi-level variable selection for genome-wide survival study
por: Lee, Eunjee, et al.
Publicado: (2023) -
Bayesian Variable Selection in Searching for Additive and Dominant Effects in Genome-Wide Data
por: Peltola, Tomi, et al.
Publicado: (2012)