Cargando…

A gentle tutorial on accelerated parameter and confidence interval estimation for hidden Markov models using Template Model Builder

A very common way to estimate the parameters of a hidden Markov model (HMM) is the relatively straightforward computation of maximum likelihood (ML) estimates. For this task, most users rely on user‐friendly implementation of the estimation routines via an interpreted programming language such as th...

Descripción completa

Detalles Bibliográficos
Autores principales: Bacri, Timothée, Berentsen, Geir D., Bulla, Jan, Hølleland, Sondre
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9796807/
https://www.ncbi.nlm.nih.gov/pubmed/35621152
http://dx.doi.org/10.1002/bimj.202100256
_version_ 1784860571868332032
author Bacri, Timothée
Berentsen, Geir D.
Bulla, Jan
Hølleland, Sondre
author_facet Bacri, Timothée
Berentsen, Geir D.
Bulla, Jan
Hølleland, Sondre
author_sort Bacri, Timothée
collection PubMed
description A very common way to estimate the parameters of a hidden Markov model (HMM) is the relatively straightforward computation of maximum likelihood (ML) estimates. For this task, most users rely on user‐friendly implementation of the estimation routines via an interpreted programming language such as the statistical software environment R. Such an approach can easily require time‐consuming computations, in particular for longer sequences of observations. In addition, selecting a suitable approach for deriving confidence intervals for the estimated parameters is not entirely obvious, and often the computationally intensive bootstrap methods have to be applied. In this tutorial, we illustrate how to speed up the computation of ML estimates significantly via the R package TMB. Moreover, this approach permits simple retrieval of standard errors at the same time. We illustrate the performance of our routines using different data sets: first, two smaller samples from a mobile application for tinnitus patients and a well‐known data set of fetal lamb movements with 87 and 240 data points, respectively. Second, we rely on larger data sets of simulated data of sizes 2000 and 5000 for further analysis. This tutorial is accompanied by a collection of scripts, which are all available in the Supporting Information. These scripts allow any user with moderate programming experience to benefit quickly from the computational advantages of TMB.
format Online
Article
Text
id pubmed-9796807
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-97968072023-01-04 A gentle tutorial on accelerated parameter and confidence interval estimation for hidden Markov models using Template Model Builder Bacri, Timothée Berentsen, Geir D. Bulla, Jan Hølleland, Sondre Biom J Statistical Modeling A very common way to estimate the parameters of a hidden Markov model (HMM) is the relatively straightforward computation of maximum likelihood (ML) estimates. For this task, most users rely on user‐friendly implementation of the estimation routines via an interpreted programming language such as the statistical software environment R. Such an approach can easily require time‐consuming computations, in particular for longer sequences of observations. In addition, selecting a suitable approach for deriving confidence intervals for the estimated parameters is not entirely obvious, and often the computationally intensive bootstrap methods have to be applied. In this tutorial, we illustrate how to speed up the computation of ML estimates significantly via the R package TMB. Moreover, this approach permits simple retrieval of standard errors at the same time. We illustrate the performance of our routines using different data sets: first, two smaller samples from a mobile application for tinnitus patients and a well‐known data set of fetal lamb movements with 87 and 240 data points, respectively. Second, we rely on larger data sets of simulated data of sizes 2000 and 5000 for further analysis. This tutorial is accompanied by a collection of scripts, which are all available in the Supporting Information. These scripts allow any user with moderate programming experience to benefit quickly from the computational advantages of TMB. John Wiley and Sons Inc. 2022-05-27 2022-10 /pmc/articles/PMC9796807/ /pubmed/35621152 http://dx.doi.org/10.1002/bimj.202100256 Text en © 2022 The Authors. Biometrical Journal published by Wiley‐VCH GmbH. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Statistical Modeling
Bacri, Timothée
Berentsen, Geir D.
Bulla, Jan
Hølleland, Sondre
A gentle tutorial on accelerated parameter and confidence interval estimation for hidden Markov models using Template Model Builder
title A gentle tutorial on accelerated parameter and confidence interval estimation for hidden Markov models using Template Model Builder
title_full A gentle tutorial on accelerated parameter and confidence interval estimation for hidden Markov models using Template Model Builder
title_fullStr A gentle tutorial on accelerated parameter and confidence interval estimation for hidden Markov models using Template Model Builder
title_full_unstemmed A gentle tutorial on accelerated parameter and confidence interval estimation for hidden Markov models using Template Model Builder
title_short A gentle tutorial on accelerated parameter and confidence interval estimation for hidden Markov models using Template Model Builder
title_sort gentle tutorial on accelerated parameter and confidence interval estimation for hidden markov models using template model builder
topic Statistical Modeling
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9796807/
https://www.ncbi.nlm.nih.gov/pubmed/35621152
http://dx.doi.org/10.1002/bimj.202100256
work_keys_str_mv AT bacritimothee agentletutorialonacceleratedparameterandconfidenceintervalestimationforhiddenmarkovmodelsusingtemplatemodelbuilder
AT berentsengeird agentletutorialonacceleratedparameterandconfidenceintervalestimationforhiddenmarkovmodelsusingtemplatemodelbuilder
AT bullajan agentletutorialonacceleratedparameterandconfidenceintervalestimationforhiddenmarkovmodelsusingtemplatemodelbuilder
AT høllelandsondre agentletutorialonacceleratedparameterandconfidenceintervalestimationforhiddenmarkovmodelsusingtemplatemodelbuilder
AT bacritimothee gentletutorialonacceleratedparameterandconfidenceintervalestimationforhiddenmarkovmodelsusingtemplatemodelbuilder
AT berentsengeird gentletutorialonacceleratedparameterandconfidenceintervalestimationforhiddenmarkovmodelsusingtemplatemodelbuilder
AT bullajan gentletutorialonacceleratedparameterandconfidenceintervalestimationforhiddenmarkovmodelsusingtemplatemodelbuilder
AT høllelandsondre gentletutorialonacceleratedparameterandconfidenceintervalestimationforhiddenmarkovmodelsusingtemplatemodelbuilder