Cargando…
Sparse RNNs can support high-capacity classification
Feedforward network models performing classification tasks rely on highly convergent output units that collect the information passed on by preceding layers. Although convergent output-unit like neurons may exist in some biological neural circuits, notably the cerebellar cortex, neocortical circuits...
Autores principales: | Turcu, Denis, Abbott, L. F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797087/ https://www.ncbi.nlm.nih.gov/pubmed/36516226 http://dx.doi.org/10.1371/journal.pcbi.1010759 |
Ejemplares similares
-
Sense classification of shallow discourse relations with focused RNNs
por: Weiss, Gregor, et al.
Publicado: (2018) -
Particle-Level Event Classification for LHC Trigger, with End-to-End Sorting RNNs
por: Weitekamp, Daniel Phillip
Publicado: (2017) -
Invited talk: Overview, RNNs and alike in HEP
por: Cranmer, Kyle Stuart
Publicado: (2018) -
Hierarchical bi-directional attention-based RNNs for supporting document classification on protein–protein interactions affected by genetic mutations
por: Fergadis, Aris, et al.
Publicado: (2018) -
Learn computer vision using OpenCV: with deep learning CNNs and RNNs
por: Gollapudi, Sunila
Publicado: (2019)