Cargando…
Interpreting tree ensemble machine learning models with endoR
Tree ensemble machine learning models are increasingly used in microbiome science as they are compatible with the compositional, high-dimensional, and sparse structure of sequence-based microbiome data. While such models are often good at predicting phenotypes based on microbiome data, they only yie...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797088/ https://www.ncbi.nlm.nih.gov/pubmed/36516158 http://dx.doi.org/10.1371/journal.pcbi.1010714 |
_version_ | 1784860627111510016 |
---|---|
author | Ruaud, Albane Pfister, Niklas Ley, Ruth E. Youngblut, Nicholas D. |
author_facet | Ruaud, Albane Pfister, Niklas Ley, Ruth E. Youngblut, Nicholas D. |
author_sort | Ruaud, Albane |
collection | PubMed |
description | Tree ensemble machine learning models are increasingly used in microbiome science as they are compatible with the compositional, high-dimensional, and sparse structure of sequence-based microbiome data. While such models are often good at predicting phenotypes based on microbiome data, they only yield limited insights into how microbial taxa may be associated. We developed endoR, a method to interpret tree ensemble models. First, endoR simplifies the fitted model into a decision ensemble. Then, it extracts information on the importance of individual features and their pairwise interactions, displaying them as an interpretable network. Both the endoR network and importance scores provide insights into how features, and interactions between them, contribute to the predictive performance of the fitted model. Adjustable regularization and bootstrapping help reduce the complexity and ensure that only essential parts of the model are retained. We assessed endoR on both simulated and real metagenomic data. We found endoR to have comparable accuracy to other common approaches while easing and enhancing model interpretation. Using endoR, we also confirmed published results on gut microbiome differences between cirrhotic and healthy individuals. Finally, we utilized endoR to explore associations between human gut methanogens and microbiome components. Indeed, these hydrogen consumers are expected to interact with fermenting bacteria in a complex syntrophic network. Specifically, we analyzed a global metagenome dataset of 2203 individuals and confirmed the previously reported association between Methanobacteriaceae and Christensenellales. Additionally, we observed that Methanobacteriaceae are associated with a network of hydrogen-producing bacteria. Our method accurately captures how tree ensembles use features and interactions between them to predict a response. As demonstrated by our applications, the resultant visualizations and summary outputs facilitate model interpretation and enable the generation of novel hypotheses about complex systems. |
format | Online Article Text |
id | pubmed-9797088 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-97970882022-12-29 Interpreting tree ensemble machine learning models with endoR Ruaud, Albane Pfister, Niklas Ley, Ruth E. Youngblut, Nicholas D. PLoS Comput Biol Research Article Tree ensemble machine learning models are increasingly used in microbiome science as they are compatible with the compositional, high-dimensional, and sparse structure of sequence-based microbiome data. While such models are often good at predicting phenotypes based on microbiome data, they only yield limited insights into how microbial taxa may be associated. We developed endoR, a method to interpret tree ensemble models. First, endoR simplifies the fitted model into a decision ensemble. Then, it extracts information on the importance of individual features and their pairwise interactions, displaying them as an interpretable network. Both the endoR network and importance scores provide insights into how features, and interactions between them, contribute to the predictive performance of the fitted model. Adjustable regularization and bootstrapping help reduce the complexity and ensure that only essential parts of the model are retained. We assessed endoR on both simulated and real metagenomic data. We found endoR to have comparable accuracy to other common approaches while easing and enhancing model interpretation. Using endoR, we also confirmed published results on gut microbiome differences between cirrhotic and healthy individuals. Finally, we utilized endoR to explore associations between human gut methanogens and microbiome components. Indeed, these hydrogen consumers are expected to interact with fermenting bacteria in a complex syntrophic network. Specifically, we analyzed a global metagenome dataset of 2203 individuals and confirmed the previously reported association between Methanobacteriaceae and Christensenellales. Additionally, we observed that Methanobacteriaceae are associated with a network of hydrogen-producing bacteria. Our method accurately captures how tree ensembles use features and interactions between them to predict a response. As demonstrated by our applications, the resultant visualizations and summary outputs facilitate model interpretation and enable the generation of novel hypotheses about complex systems. Public Library of Science 2022-12-14 /pmc/articles/PMC9797088/ /pubmed/36516158 http://dx.doi.org/10.1371/journal.pcbi.1010714 Text en © 2022 Ruaud et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Ruaud, Albane Pfister, Niklas Ley, Ruth E. Youngblut, Nicholas D. Interpreting tree ensemble machine learning models with endoR |
title | Interpreting tree ensemble machine learning models with endoR |
title_full | Interpreting tree ensemble machine learning models with endoR |
title_fullStr | Interpreting tree ensemble machine learning models with endoR |
title_full_unstemmed | Interpreting tree ensemble machine learning models with endoR |
title_short | Interpreting tree ensemble machine learning models with endoR |
title_sort | interpreting tree ensemble machine learning models with endor |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797088/ https://www.ncbi.nlm.nih.gov/pubmed/36516158 http://dx.doi.org/10.1371/journal.pcbi.1010714 |
work_keys_str_mv | AT ruaudalbane interpretingtreeensemblemachinelearningmodelswithendor AT pfisterniklas interpretingtreeensemblemachinelearningmodelswithendor AT leyruthe interpretingtreeensemblemachinelearningmodelswithendor AT youngblutnicholasd interpretingtreeensemblemachinelearningmodelswithendor |