Cargando…
Interpreting tree ensemble machine learning models with endoR
Tree ensemble machine learning models are increasingly used in microbiome science as they are compatible with the compositional, high-dimensional, and sparse structure of sequence-based microbiome data. While such models are often good at predicting phenotypes based on microbiome data, they only yie...
Autores principales: | Ruaud, Albane, Pfister, Niklas, Ley, Ruth E., Youngblut, Nicholas D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797088/ https://www.ncbi.nlm.nih.gov/pubmed/36516158 http://dx.doi.org/10.1371/journal.pcbi.1010714 |
Ejemplares similares
-
Faster colonoscope withdrawal time without impaired detection using EndoRings
por: Thygesen, John C., et al.
Publicado: (2018) -
Syntrophy via Interspecies H(2) Transfer between Christensenella and Methanobrevibacter Underlies Their Global Cooccurrence in the Human Gut
por: Ruaud, Albane, et al.
Publicado: (2020) -
Statistical analysis of ENDOR spectra
por: Pokern, Yvo, et al.
Publicado: (2021) -
A Proton ENDOR Study of Azurin
por: Sottini, Silvia, et al.
Publicado: (2009) -
Genome Sequence and Characterization of Five Bacteriophages Infecting Streptomyces coelicolor and Streptomyces venezuelae: Alderaan, Coruscant, Dagobah, Endor1 and Endor2
por: Hardy, Aël, et al.
Publicado: (2020)