Cargando…
Image quality improvement in low‐dose chest CT with deep learning image reconstruction
OBJECTIVES: To investigate the clinical utility of deep learning image reconstruction (DLIR) for improving image quality in low‐dose chest CT in comparison with 40% adaptive statistical iterative reconstruction‐Veo (ASiR‐V40%) algorithm. METHODS: This retrospective study included 86 patients who und...
Autores principales: | Tian, Qian, Li, Xinyu, Li, Jianying, Cheng, Yannan, Niu, Xinyi, Zhu, Shumeng, Xu, Wenting, Guo, Jianxin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797160/ https://www.ncbi.nlm.nih.gov/pubmed/36210060 http://dx.doi.org/10.1002/acm2.13796 |
Ejemplares similares
-
Evaluation of deep‐learning image reconstruction for chest CT examinations at two different dose levels
por: Svalkvist, Angelica, et al.
Publicado: (2022) -
The value of using a deep learning image reconstruction algorithm of thinner slice thickness to balance the image noise and spatial resolution in low-dose abdominal CT
por: Wang, Huan, et al.
Publicado: (2022) -
Applying a CT texture analysis model trained with deep‐learning reconstruction images to iterative reconstruction images in pulmonary nodule diagnosis
por: Wang, Qingle, et al.
Publicado: (2022) -
Image texture and radiation dose properties in CT
por: Mozejko, Dawid, et al.
Publicado: (2016) -
Image quality improvement with deep learning‐based reconstruction on abdominal ultrahigh‐resolution CT: A phantom study
por: Shirasaka, Takashi, et al.
Publicado: (2021)