Cargando…

Potential Therapeutic Mechanism of Scutellaria baicalensis Georgi against Ankylosing Spondylitis Based on a Comprehensive Pharmacological Model

BACKGROUND: Scutellaria baicalensis Georgi (SBG) has significant anti-inflammatory and immune-modulating activities and is widely used in the treatment of inflammatory and autoimmune diseases. However, the mechanism of SBG in the treatment of ankylosing spondylitis (AS) remains to be elucidated. MET...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xu, Liu, Jian, Fang, Yanyan, Huang, Dan, He, Mingyu, Wang, Fanfan, Han, Qi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797298/
https://www.ncbi.nlm.nih.gov/pubmed/36588535
http://dx.doi.org/10.1155/2022/9887012
_version_ 1784860661497462784
author Li, Xu
Liu, Jian
Fang, Yanyan
Huang, Dan
He, Mingyu
Wang, Fanfan
Han, Qi
author_facet Li, Xu
Liu, Jian
Fang, Yanyan
Huang, Dan
He, Mingyu
Wang, Fanfan
Han, Qi
author_sort Li, Xu
collection PubMed
description BACKGROUND: Scutellaria baicalensis Georgi (SBG) has significant anti-inflammatory and immune-modulating activities and is widely used in the treatment of inflammatory and autoimmune diseases. However, the mechanism of SBG in the treatment of ankylosing spondylitis (AS) remains to be elucidated. METHODS: Differentially expressed genes (DEGs) related to AS were analyzed based on two GEO gene chips. The DEGs were merged with the data derived from OMIM, GeneCards, and PharmGKB databases to ascertain AS-related targets. Active components of SBG and their targets were acquired from the TCMSP database. After overlapping the targets of AS and SBG, the action targets were acquired. Subsequently, protein-protein interaction (PPI) network and core target screening were conducted using the STRING database and Cytoscape software. Moreover, the DAVID platform was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of action targets. Finally, the affinity of major active components and core targets was validated with molecular docking. RESULTS: A total of 36 active components of SBG were acquired from TCMSP database. Among these, the main active components were baicalein, wogonin, and oroxylin A. The PPI network and screening showed TNF, IL-6, CXCL8, PTGS2, and VEGFA as core targets associated SBG against AS. GO and KEGG analyses indicated that SBG participated in various biological processes, via regulating IL-17, TNF, and NF-κB signaling pathways. Molecular docking results confirmed a strong binding activity between the main active components and the core targets. CONCLUSION: The therapeutic mechanism of SBG associated with AS can be characterized as a multicomponent, multitarget, and multipathway mechanism. SBG may be a promising therapeutic candidate for AS.
format Online
Article
Text
id pubmed-9797298
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-97972982022-12-29 Potential Therapeutic Mechanism of Scutellaria baicalensis Georgi against Ankylosing Spondylitis Based on a Comprehensive Pharmacological Model Li, Xu Liu, Jian Fang, Yanyan Huang, Dan He, Mingyu Wang, Fanfan Han, Qi Biomed Res Int Research Article BACKGROUND: Scutellaria baicalensis Georgi (SBG) has significant anti-inflammatory and immune-modulating activities and is widely used in the treatment of inflammatory and autoimmune diseases. However, the mechanism of SBG in the treatment of ankylosing spondylitis (AS) remains to be elucidated. METHODS: Differentially expressed genes (DEGs) related to AS were analyzed based on two GEO gene chips. The DEGs were merged with the data derived from OMIM, GeneCards, and PharmGKB databases to ascertain AS-related targets. Active components of SBG and their targets were acquired from the TCMSP database. After overlapping the targets of AS and SBG, the action targets were acquired. Subsequently, protein-protein interaction (PPI) network and core target screening were conducted using the STRING database and Cytoscape software. Moreover, the DAVID platform was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of action targets. Finally, the affinity of major active components and core targets was validated with molecular docking. RESULTS: A total of 36 active components of SBG were acquired from TCMSP database. Among these, the main active components were baicalein, wogonin, and oroxylin A. The PPI network and screening showed TNF, IL-6, CXCL8, PTGS2, and VEGFA as core targets associated SBG against AS. GO and KEGG analyses indicated that SBG participated in various biological processes, via regulating IL-17, TNF, and NF-κB signaling pathways. Molecular docking results confirmed a strong binding activity between the main active components and the core targets. CONCLUSION: The therapeutic mechanism of SBG associated with AS can be characterized as a multicomponent, multitarget, and multipathway mechanism. SBG may be a promising therapeutic candidate for AS. Hindawi 2022-12-21 /pmc/articles/PMC9797298/ /pubmed/36588535 http://dx.doi.org/10.1155/2022/9887012 Text en Copyright © 2022 Xu Li et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Li, Xu
Liu, Jian
Fang, Yanyan
Huang, Dan
He, Mingyu
Wang, Fanfan
Han, Qi
Potential Therapeutic Mechanism of Scutellaria baicalensis Georgi against Ankylosing Spondylitis Based on a Comprehensive Pharmacological Model
title Potential Therapeutic Mechanism of Scutellaria baicalensis Georgi against Ankylosing Spondylitis Based on a Comprehensive Pharmacological Model
title_full Potential Therapeutic Mechanism of Scutellaria baicalensis Georgi against Ankylosing Spondylitis Based on a Comprehensive Pharmacological Model
title_fullStr Potential Therapeutic Mechanism of Scutellaria baicalensis Georgi against Ankylosing Spondylitis Based on a Comprehensive Pharmacological Model
title_full_unstemmed Potential Therapeutic Mechanism of Scutellaria baicalensis Georgi against Ankylosing Spondylitis Based on a Comprehensive Pharmacological Model
title_short Potential Therapeutic Mechanism of Scutellaria baicalensis Georgi against Ankylosing Spondylitis Based on a Comprehensive Pharmacological Model
title_sort potential therapeutic mechanism of scutellaria baicalensis georgi against ankylosing spondylitis based on a comprehensive pharmacological model
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797298/
https://www.ncbi.nlm.nih.gov/pubmed/36588535
http://dx.doi.org/10.1155/2022/9887012
work_keys_str_mv AT lixu potentialtherapeuticmechanismofscutellariabaicalensisgeorgiagainstankylosingspondylitisbasedonacomprehensivepharmacologicalmodel
AT liujian potentialtherapeuticmechanismofscutellariabaicalensisgeorgiagainstankylosingspondylitisbasedonacomprehensivepharmacologicalmodel
AT fangyanyan potentialtherapeuticmechanismofscutellariabaicalensisgeorgiagainstankylosingspondylitisbasedonacomprehensivepharmacologicalmodel
AT huangdan potentialtherapeuticmechanismofscutellariabaicalensisgeorgiagainstankylosingspondylitisbasedonacomprehensivepharmacologicalmodel
AT hemingyu potentialtherapeuticmechanismofscutellariabaicalensisgeorgiagainstankylosingspondylitisbasedonacomprehensivepharmacologicalmodel
AT wangfanfan potentialtherapeuticmechanismofscutellariabaicalensisgeorgiagainstankylosingspondylitisbasedonacomprehensivepharmacologicalmodel
AT hanqi potentialtherapeuticmechanismofscutellariabaicalensisgeorgiagainstankylosingspondylitisbasedonacomprehensivepharmacologicalmodel