Cargando…
Humic Acids Inhibit Platelet Activation to Reduce Venous Thromboembolism in Mice
OBJECTIVE: We aimed to investigate the effects of the natural product humic acids (HA) on platelet activation and development of venous thromboembolism (VTE) in mice and further explore the relevant mechanism. METHODS: Eight-week C57BL/6 mice were randomly assigned to three groups: sham operation gr...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797308/ https://www.ncbi.nlm.nih.gov/pubmed/36588591 http://dx.doi.org/10.1155/2022/6606423 |
_version_ | 1784860663971053568 |
---|---|
author | Lan, Hong-Tao Zheng, Ya-Ting Tong, Zhou-Jie Zhang, Cong Cong, Xiao-Yan Wang, Zhi-Hao |
author_facet | Lan, Hong-Tao Zheng, Ya-Ting Tong, Zhou-Jie Zhang, Cong Cong, Xiao-Yan Wang, Zhi-Hao |
author_sort | Lan, Hong-Tao |
collection | PubMed |
description | OBJECTIVE: We aimed to investigate the effects of the natural product humic acids (HA) on platelet activation and development of venous thromboembolism (VTE) in mice and further explore the relevant mechanism. METHODS: Eight-week C57BL/6 mice were randomly assigned to three groups: sham operation group (n = 7), VTE group (n = 8), and VTE + HA group (n = 10). Thrombi were harvested to hematoxylin-eosin staining to evaluate the thrombolysis and recanalization of the thrombus. In addition, flow cytometry was performed to detect the expression levels of protein disulfide isomerase on endothelial-derived exosomes and glycoprotein IIb/IIIa on the surface of the activated platelets surface in plasma. Furthermore, the protein expression level of glycoprotein IIb/IIIa in thrombus was determined by immunohistochemistry and immunofluorescence. RESULTS: The length of thrombosis in the VTE + HA group was significantly shorter than that in the VTE group (P = 0.040). No significant differences were observed in thrombolysis and recanalization between the VTE + HA group and the VTE group (P > 0.05). The content of protein disulfide isomerase carried by endothelial-derived exosomes was significantly increased in the VTE group (P = 0.008) but significantly reduced by native humic acids (P = 0.012). Compared with the VTE group, the expression of glycoprotein IIb/IIIa on activated platelet surface in the VTE + HA group was significantly decreased (P = 0.002). The concentration of plasmatic P-selectin in the VTE group was significantly higher than that in the VTE + HA group (P < 0.001). CONCLUSION: We demonstrate that HA possess a pharmacological property that decreases venous thrombus formation in mice. The underlying mechanism is that HA could inhibit the expression of glycoprotein IIb/IIIa on the activated platelets surface by suppressing endothelial-derived exosomes carrying on protein disulfide isomerase, thereby blocking platelet activation. |
format | Online Article Text |
id | pubmed-9797308 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-97973082022-12-29 Humic Acids Inhibit Platelet Activation to Reduce Venous Thromboembolism in Mice Lan, Hong-Tao Zheng, Ya-Ting Tong, Zhou-Jie Zhang, Cong Cong, Xiao-Yan Wang, Zhi-Hao Evid Based Complement Alternat Med Research Article OBJECTIVE: We aimed to investigate the effects of the natural product humic acids (HA) on platelet activation and development of venous thromboembolism (VTE) in mice and further explore the relevant mechanism. METHODS: Eight-week C57BL/6 mice were randomly assigned to three groups: sham operation group (n = 7), VTE group (n = 8), and VTE + HA group (n = 10). Thrombi were harvested to hematoxylin-eosin staining to evaluate the thrombolysis and recanalization of the thrombus. In addition, flow cytometry was performed to detect the expression levels of protein disulfide isomerase on endothelial-derived exosomes and glycoprotein IIb/IIIa on the surface of the activated platelets surface in plasma. Furthermore, the protein expression level of glycoprotein IIb/IIIa in thrombus was determined by immunohistochemistry and immunofluorescence. RESULTS: The length of thrombosis in the VTE + HA group was significantly shorter than that in the VTE group (P = 0.040). No significant differences were observed in thrombolysis and recanalization between the VTE + HA group and the VTE group (P > 0.05). The content of protein disulfide isomerase carried by endothelial-derived exosomes was significantly increased in the VTE group (P = 0.008) but significantly reduced by native humic acids (P = 0.012). Compared with the VTE group, the expression of glycoprotein IIb/IIIa on activated platelet surface in the VTE + HA group was significantly decreased (P = 0.002). The concentration of plasmatic P-selectin in the VTE group was significantly higher than that in the VTE + HA group (P < 0.001). CONCLUSION: We demonstrate that HA possess a pharmacological property that decreases venous thrombus formation in mice. The underlying mechanism is that HA could inhibit the expression of glycoprotein IIb/IIIa on the activated platelets surface by suppressing endothelial-derived exosomes carrying on protein disulfide isomerase, thereby blocking platelet activation. Hindawi 2022-12-21 /pmc/articles/PMC9797308/ /pubmed/36588591 http://dx.doi.org/10.1155/2022/6606423 Text en Copyright © 2022 Hong-Tao Lan et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Lan, Hong-Tao Zheng, Ya-Ting Tong, Zhou-Jie Zhang, Cong Cong, Xiao-Yan Wang, Zhi-Hao Humic Acids Inhibit Platelet Activation to Reduce Venous Thromboembolism in Mice |
title | Humic Acids Inhibit Platelet Activation to Reduce Venous Thromboembolism in Mice |
title_full | Humic Acids Inhibit Platelet Activation to Reduce Venous Thromboembolism in Mice |
title_fullStr | Humic Acids Inhibit Platelet Activation to Reduce Venous Thromboembolism in Mice |
title_full_unstemmed | Humic Acids Inhibit Platelet Activation to Reduce Venous Thromboembolism in Mice |
title_short | Humic Acids Inhibit Platelet Activation to Reduce Venous Thromboembolism in Mice |
title_sort | humic acids inhibit platelet activation to reduce venous thromboembolism in mice |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797308/ https://www.ncbi.nlm.nih.gov/pubmed/36588591 http://dx.doi.org/10.1155/2022/6606423 |
work_keys_str_mv | AT lanhongtao humicacidsinhibitplateletactivationtoreducevenousthromboembolisminmice AT zhengyating humicacidsinhibitplateletactivationtoreducevenousthromboembolisminmice AT tongzhoujie humicacidsinhibitplateletactivationtoreducevenousthromboembolisminmice AT zhangcong humicacidsinhibitplateletactivationtoreducevenousthromboembolisminmice AT congxiaoyan humicacidsinhibitplateletactivationtoreducevenousthromboembolisminmice AT wangzhihao humicacidsinhibitplateletactivationtoreducevenousthromboembolisminmice |