Cargando…
Machine learning assessment of white blood cell counts in workers exposed to benzene: a historical cohort study
To explore the fitting effect of the ARIMA, GM(1,1), and RANSAC model in the changes of white blood cells (WBC) in benzene-exposed workers, and select the optimal model to predict the WBC count of workers. Among 350 employees in an aerospace process manufacturing enterprise in Nanjing, workers with...
Autores principales: | Xin, Yiliang, Wang, Boshen, Zhang, Hengdong, Han, Lei, Zhou, Peng, Ding, Xuexue, Zhu, Baoli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797385/ https://www.ncbi.nlm.nih.gov/pubmed/36577823 http://dx.doi.org/10.1007/s11356-022-24453-z |
Ejemplares similares
-
A novel, effective machine learning-based RNA editing profile for predicting the prognosis of lower-grade gliomas
por: Wang, Boshen, et al.
Publicado: (2023) -
Industry Distribution Characteristics of Benzene-Exposed Workers with Cytopenia — Four Provinces, China, 2020
por: Hua, Dongning, et al.
Publicado: (2022) -
Factors Influencing Trace Element Levels in the Blood of Tin Smelting Workers
por: Zhang, Ludi, et al.
Publicado: (2022) -
Use of longitudinal analysis of peripheral blood counts to validate historical reconstructions of benzene exposure.
por: Kipen, H M, et al.
Publicado: (1989) -
Interphase cytogenetics of workers exposed to benzene.
por: Zhang, L, et al.
Publicado: (1996)