Cargando…
Recalibration of myoelectric control with active learning
INTRODUCTION: Improving the robustness of myoelectric control to work over many months without the need for recalibration could reduce prosthesis abandonment. Current approaches rely on post-hoc error detection to verify the certainty of a decoder's prediction using predefined threshold value....
Autores principales: | Szymaniak, Katarzyna, Krasoulis, Agamemnon, Nazarpour, Kianoush |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797496/ https://www.ncbi.nlm.nih.gov/pubmed/36590085 http://dx.doi.org/10.3389/fnbot.2022.1061201 |
Ejemplares similares
-
Effect of User Practice on Prosthetic Finger Control With an Intuitive Myoelectric Decoder
por: Krasoulis, Agamemnon, et al.
Publicado: (2019) -
Myoelectric digit action decoding with multi-output, multi-class classification: an offline analysis
por: Krasoulis, Agamemnon, et al.
Publicado: (2020) -
Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements
por: Krasoulis, Agamemnon, et al.
Publicado: (2017) -
Artificial Proprioceptive Feedback for Myoelectric Control
por: Pistohl, Tobias, et al.
Publicado: (2015) -
Arduino-Based Myoelectric Control: Towards Longitudinal Study of Prosthesis Use
por: Wu, Hancong, et al.
Publicado: (2021)