Cargando…
A statistical learning protocol to resolve the morphological complexity of two-dimensional macromolecules
Unraveling the morphological complexity of two-dimensional macromolecules allows researchers to design and fabricate high-performance, multifunctional materials. Here, we present a protocol based on statistical learning to resolve morphological complexity utilizing geometrical, topological, and phys...
Autores principales: | Zhao, Yingjie, Xu, Zhiping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797609/ https://www.ncbi.nlm.nih.gov/pubmed/36223266 http://dx.doi.org/10.1016/j.xpro.2022.101767 |
Ejemplares similares
-
Unraveling the morphological complexity of two-dimensional macromolecules
por: Zhao, Yingjie, et al.
Publicado: (2022) -
OptiPrep? Density Gradient Solutions for Macromolecules and Macromolecular Complexes
por: Graham, John
Publicado: (2002) -
FunGraph: A statistical protocol to reconstruct omnigenic multilayer interactome networks for complex traits
por: Dong, Ang, et al.
Publicado: (2021) -
Construction of a Three-Color Prism-Based TIRF Microscope to Study the Interactions and Dynamics of Macromolecules
por: Fairlamb, Max S., et al.
Publicado: (2021) -
Construction of
Macromolecules of Depolymerized Lignite
por: Liu, Muxin, et al.
Publicado: (2023)