Cargando…

Multiplexed shRNA-miRs as a candidate for anti HIV-1 therapy: strategies, challenges, and future potential

The spread of HIV is on the rise and has become a global issue, especially for underdeveloped and developing countries. This is due to the fact that HIV majorly occurs asymptomatically and is implausible for early diagnosis. Recent advances in research and science have enabled the investigation of a...

Descripción completa

Detalles Bibliográficos
Autores principales: Jai, Jyotsna, Shirleen, Deborah, Hanbali, Christian, Wijaya, Pamela, Anginan, Theresia Brigita, Husada, William, Pratama, Muhammad Yogi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797628/
https://www.ncbi.nlm.nih.gov/pubmed/36576612
http://dx.doi.org/10.1186/s43141-022-00451-z
Descripción
Sumario:The spread of HIV is on the rise and has become a global issue, especially for underdeveloped and developing countries. This is due to the fact that HIV majorly occurs asymptomatically and is implausible for early diagnosis. Recent advances in research and science have enabled the investigation of a new potential treatment involving gene-based therapy, known as RNA interference (RNAi) that will direct gene silencing and further compensate for natural variants and viral mutants. Several types of small regulatory RNA are discussed in this present study, including microRNA (miRNA), small interfering RNA (siRNA), and short hairpin RNA (shRNA). This paper examines the mechanism of RNAi as a viable HIV therapy, using a minimum of four shRNAs to target both dispensable host components (CCR5) and viral genes (Gag, Env, Tat, Pol I, Pol II and Vif). Moreover, a multiplexed mechanism of shRNAs and miRNA is known to be effective in preventing viral escape due to mutation as the miRNA develops a general polycistronic platform for the expression of a large amount of shRNA-miRs. Several administration methods as well as the advantages of this RNAi treatment are also discussed in this study. The administration methods include (1) ex vivo delivery with the help of viral vectors, nanoparticles, and electroporation, (2) nonspecific in vivo delivery using non-viral carriers including liposomes, dendrimers and aptamers, as well as (3) targeted delivery that uses antibodies, modified nanoparticles, nucleic acid aptamers, and tissue-specific serotypes of AAV. Moreover, the advantages of this treatment are related to the effectiveness in silencing the HIV gene, which is more compatible compared to other gene therapy treatments, such as ZFN, TALEN, and CRISPR/Cas9.