Cargando…
Deep learning and session-specific rapid recalibration for dynamic hand gesture recognition from EMG
We anticipate wide adoption of wrist and forearm electomyographic (EMG) interface devices worn daily by the same user. This presents unique challenges that are not yet well addressed in the EMG literature, such as adapting for session-specific differences while learning a longer-term model of the sp...
Autores principales: | Karrenbach, Maxim, Preechayasomboon, Pornthep, Sauer, Peter, Boe, David, Rombokas, Eric |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797837/ https://www.ncbi.nlm.nih.gov/pubmed/36588953 http://dx.doi.org/10.3389/fbioe.2022.1034672 |
Ejemplares similares
-
Dimensionality Reduction of Human Gait for Prosthetic Control
por: Boe, David, et al.
Publicado: (2021) -
Dynamic Gesture Recognition Using Surface EMG Signals Based on Multi-Stream Residual Network
por: Yang, Zhiwen, et al.
Publicado: (2021) -
Improved Multi-Stream Convolutional Block Attention Module for sEMG-Based Gesture Recognition
por: Wang, Shudi, et al.
Publicado: (2022) -
Biometric From Surface Electromyogram (sEMG): Feasibility of User Verification and Identification Based on Gesture Recognition
por: He, Jiayuan, et al.
Publicado: (2020) -
Negshell casting: 3D-printed structured and sacrificial cores for soft robot fabrication
por: Preechayasomboon, Pornthep, et al.
Publicado: (2020)