Cargando…
Multi-scale and attention enhanced graph convolution network for skeleton-based violence action recognition
Graph convolution networks (GCNs) have been widely used in the field of skeleton-based human action recognition. However, it is still difficult to improve recognition performance and reduce parameter complexity. In this paper, a novel multi-scale attention spatiotemporal GCN (MSA-STGCN) is proposed...
Autores principales: | Yang, Huaigang, Ren, Ziliang, Yuan, Huaqiang, Wei, Wenhong, Zhang, Qieshi, Zhang, Zhaolong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797844/ https://www.ncbi.nlm.nih.gov/pubmed/36590083 http://dx.doi.org/10.3389/fnbot.2022.1091361 |
Ejemplares similares
-
Adaptive Attention Memory Graph Convolutional Networks for Skeleton-Based Action Recognition
por: Liu, Di, et al.
Publicado: (2021) -
Shallow Graph Convolutional Network for Skeleton-Based Action Recognition
por: Yang, Wenjie, et al.
Publicado: (2021) -
Multi-Modality Adaptive Feature Fusion Graph Convolutional Network for Skeleton-Based Action Recognition
por: Zhang, Haiping, et al.
Publicado: (2023) -
Fast Temporal Graph Convolutional Model for Skeleton-Based Action Recognition
por: Nan, Mihai, et al.
Publicado: (2022) -
GAS-GCN: Gated Action-Specific Graph Convolutional Networks for Skeleton-Based Action Recognition
por: Chan, Wensong, et al.
Publicado: (2020)