Cargando…
Improving Friend Recommendation for Online Learning with Fine-Grained Evolving Interest
Friend recommendation plays a key role in promoting user experience in online social networks (OSNs). However, existing studies usually neglect users' fine-grained interest as well as the evolving feature of interest, which may cause unsuitable recommendation. In particular, some OSNs, such as...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797881/ https://www.ncbi.nlm.nih.gov/pubmed/36594007 http://dx.doi.org/10.1007/s11390-021-2124-z |
_version_ | 1784860781925367808 |
---|---|
author | Shao, Ming-Min Jiang, Wen-Jun Wu, Jie Shi, Yu-Qing Yum, TakShing Zhang, Ji |
author_facet | Shao, Ming-Min Jiang, Wen-Jun Wu, Jie Shi, Yu-Qing Yum, TakShing Zhang, Ji |
author_sort | Shao, Ming-Min |
collection | PubMed |
description | Friend recommendation plays a key role in promoting user experience in online social networks (OSNs). However, existing studies usually neglect users' fine-grained interest as well as the evolving feature of interest, which may cause unsuitable recommendation. In particular, some OSNs, such as the online learning community, even have little work on friend recommendation. To this end, we strive to improve friend recommendation with fine-grained evolving interest in this paper. We take the online learning community as an application scenario, which is a special type of OSNs for people to learn courses online. Learning partners can help improve learners' learning effect and improve the attractiveness of platforms. We propose a learning partner recommendation framework based on the evolution of fine-grained learning interest (LPRF-E for short). We extract a sequence of learning interest tags that changes over time. Then, we explore the time feature to predict evolving learning interest. Next, we recommend learning partners by fine-grained interest similarity. We also refine the learning partner recommendation framework with users' social influence (denoted as LPRF-F for differentiation). Extensive experiments on two real datasets crawled from Chinese University MOOC and Douban Book validate that the proposed LPRF-E and LPRF-F models achieve a high accuracy (i.e., approximate 50% improvements on the precision and the recall) and can recommend learning partners with high quality (e.g., more experienced and helpful). SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11390-021-2124-z. |
format | Online Article Text |
id | pubmed-9797881 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer Nature Singapore |
record_format | MEDLINE/PubMed |
spelling | pubmed-97978812022-12-29 Improving Friend Recommendation for Online Learning with Fine-Grained Evolving Interest Shao, Ming-Min Jiang, Wen-Jun Wu, Jie Shi, Yu-Qing Yum, TakShing Zhang, Ji J Comput Sci Technol Regular Paper Friend recommendation plays a key role in promoting user experience in online social networks (OSNs). However, existing studies usually neglect users' fine-grained interest as well as the evolving feature of interest, which may cause unsuitable recommendation. In particular, some OSNs, such as the online learning community, even have little work on friend recommendation. To this end, we strive to improve friend recommendation with fine-grained evolving interest in this paper. We take the online learning community as an application scenario, which is a special type of OSNs for people to learn courses online. Learning partners can help improve learners' learning effect and improve the attractiveness of platforms. We propose a learning partner recommendation framework based on the evolution of fine-grained learning interest (LPRF-E for short). We extract a sequence of learning interest tags that changes over time. Then, we explore the time feature to predict evolving learning interest. Next, we recommend learning partners by fine-grained interest similarity. We also refine the learning partner recommendation framework with users' social influence (denoted as LPRF-F for differentiation). Extensive experiments on two real datasets crawled from Chinese University MOOC and Douban Book validate that the proposed LPRF-E and LPRF-F models achieve a high accuracy (i.e., approximate 50% improvements on the precision and the recall) and can recommend learning partners with high quality (e.g., more experienced and helpful). SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11390-021-2124-z. Springer Nature Singapore 2022-11-30 2022 /pmc/articles/PMC9797881/ /pubmed/36594007 http://dx.doi.org/10.1007/s11390-021-2124-z Text en © Institute of Computing Technology, Chinese Academy of Sciences 2022 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Regular Paper Shao, Ming-Min Jiang, Wen-Jun Wu, Jie Shi, Yu-Qing Yum, TakShing Zhang, Ji Improving Friend Recommendation for Online Learning with Fine-Grained Evolving Interest |
title | Improving Friend Recommendation for Online Learning with Fine-Grained Evolving Interest |
title_full | Improving Friend Recommendation for Online Learning with Fine-Grained Evolving Interest |
title_fullStr | Improving Friend Recommendation for Online Learning with Fine-Grained Evolving Interest |
title_full_unstemmed | Improving Friend Recommendation for Online Learning with Fine-Grained Evolving Interest |
title_short | Improving Friend Recommendation for Online Learning with Fine-Grained Evolving Interest |
title_sort | improving friend recommendation for online learning with fine-grained evolving interest |
topic | Regular Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797881/ https://www.ncbi.nlm.nih.gov/pubmed/36594007 http://dx.doi.org/10.1007/s11390-021-2124-z |
work_keys_str_mv | AT shaomingmin improvingfriendrecommendationforonlinelearningwithfinegrainedevolvinginterest AT jiangwenjun improvingfriendrecommendationforonlinelearningwithfinegrainedevolvinginterest AT wujie improvingfriendrecommendationforonlinelearningwithfinegrainedevolvinginterest AT shiyuqing improvingfriendrecommendationforonlinelearningwithfinegrainedevolvinginterest AT yumtakshing improvingfriendrecommendationforonlinelearningwithfinegrainedevolvinginterest AT zhangji improvingfriendrecommendationforonlinelearningwithfinegrainedevolvinginterest |