Cargando…
I/O Efficient Early Bursting Cohesive Subgraph Discovery in Massive Temporal Networks
Temporal networks are an effective way to encode temporal information into graph data losslessly. Finding the bursting cohesive subgraph (BCS), which accumulates its cohesiveness at the fastest rate, is an important problem in temporal networks. The BCS has a large number of applications, such as re...
Autores principales: | Li, Yuan, Dai, Jie, Fan, Xiao-Lin, Zhao, Yu-Hai, Wang, Guo-Ren |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797886/ https://www.ncbi.nlm.nih.gov/pubmed/36594008 http://dx.doi.org/10.1007/s11390-022-2367-3 |
Ejemplares similares
-
Mining subgraph coverage patterns from graph transactions
por: Reddy, A. Srinivas, et al.
Publicado: (2021) -
Pathway discovery in metabolic networks by subgraph extraction
por: Faust, Karoline, et al.
Publicado: (2010) -
Cohesive subgraph computation over large sparse graphs: algorithms, data structures, and programming techniques
por: Chang, Lijun, et al.
Publicado: (2018) -
Context-Driven Automatic Subgraph Creation for Literature-Based Discovery
por: Cameron, Delroy, et al.
Publicado: (2015) -
TS-Extractor: large graph exploration via subgraph extraction based on topological and semantic information
por: Fu, Kun, et al.
Publicado: (2020)