Cargando…
Deep generative molecular design reshapes drug discovery
Recent advances and accomplishments of artificial intelligence (AI) and deep generative models have established their usefulness in medicinal applications, especially in drug discovery and development. To correctly apply AI, the developer and user face questions such as which protocols to consider,...
Autores principales: | Zeng, Xiangxiang, Wang, Fei, Luo, Yuan, Kang, Seung-gu, Tang, Jian, Lightstone, Felice C., Fang, Evandro F., Cornell, Wendy, Nussinov, Ruth, Cheng, Feixiong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797947/ https://www.ncbi.nlm.nih.gov/pubmed/36306797 http://dx.doi.org/10.1016/j.xcrm.2022.100794 |
Ejemplares similares
-
A component overlapping attribute clustering (COAC) algorithm for single-cell RNA sequencing data analysis and potential pathobiological implications
por: Peng, He, et al.
Publicado: (2019) -
Accurate prediction of molecular targets using a self-supervised image representation learning framework
por: Zeng, Xiangxiang, et al.
Publicado: (2022) -
Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data
por: Xu, Junlin, et al.
Publicado: (2023) -
In Silico Insights into Protein–Protein Interaction Disruptive Mutations in the PCSK9-LDLR Complex
por: Martin, William R., et al.
Publicado: (2020) -
Target identification among known drugs by deep learning from heterogeneous networks
por: Zeng, Xiangxiang, et al.
Publicado: (2020)