Cargando…
Determining asthma endotypes and outcomes: Complementing existing clinical practice with modern machine learning
There is unprecedented opportunity to use machine learning to integrate high-dimensional molecular data with clinical characteristics to accurately diagnose and manage disease. Asthma is a complex and heterogeneous disease and cannot be solely explained by an aberrant type 2 (T2) immune response. Av...
Autores principales: | Ray, Anuradha, Das, Jishnu, Wenzel, Sally E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798025/ https://www.ncbi.nlm.nih.gov/pubmed/36543110 http://dx.doi.org/10.1016/j.xcrm.2022.100857 |
Ejemplares similares
-
Asthma Endotyping and Biomarkers in Childhood Asthma
por: Licari, Amelia, et al.
Publicado: (2018) -
Placing Ureaplasma within the Context of Bronchopulmonary Dysplasia Endotypes and Phenotypes
por: Van Mechelen, Karen, et al.
Publicado: (2023) -
The Value of Targeting Complement Components in Asthma
por: Mohamed, Marwa M. E., et al.
Publicado: (2020) -
Machine learning implicates the IL-18 signaling axis in severe asthma
por: Camiolo, Matthew J., et al.
Publicado: (2021) -
Asthma Endotypes and an Overview of Targeted Therapy for Asthma
por: Svenningsen, Sarah, et al.
Publicado: (2017)