Cargando…
HRD-related morphology discovery in breast cancer by controlling for confounding factors
Lazard et al.(1) predict homologous recombination deficiency from hematoxylin and eosin-stained slides of breast cancer tissue using deep learning. By controlling for technical artifacts on a curated dataset, the model puts forward novel HRD-related morphologies in luminal breast cancers.
Autores principales: | Schirris, Yoni, Horlings, Hugo Mark |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798077/ https://www.ncbi.nlm.nih.gov/pubmed/36543118 http://dx.doi.org/10.1016/j.xcrm.2022.100873 |
Ejemplares similares
-
Shifting Gears in Biomaterials Discovery
por: de Boer, Jan
Publicado: (2020) -
Learning what not to select for in antibody drug discovery
por: Gao, Beichen, et al.
Publicado: (2022) -
Genomic discoveries unveil mechanistic insights in diabetes
por: Florez, Jose C.
Publicado: (2022) -
The Human Tumor Atlas Network’s beginning steps toward the future of collaborative multi-omic discovery
por: Page, David B.
Publicado: (2022) -
Preview of machine learning the quantum-chemical properties of metal–organic frameworks for accelerated materials discovery
por: Callaghan, Sarah
Publicado: (2021)