Cargando…
Instance segmentation using semi-supervised learning for fire recognition
Fire disaster brings enormous danger to the safety of human life and property, and it is important to identify the fire situation in time through image processing technology. The current instance segmentation algorithms suffer from problems such as inadequate fire images and annotations, low recogni...
Autores principales: | Sun, Guangmin, Wen, Yuxuan, Li, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798183/ https://www.ncbi.nlm.nih.gov/pubmed/36590555 http://dx.doi.org/10.1016/j.heliyon.2022.e12375 |
Ejemplares similares
-
Semi-Supervised Instance-Segmentation Model for Feature Transfer Based on Category Attention
por: Wang, Hao, et al.
Publicado: (2022) -
WS-RCNN: Learning to Score Proposals for Weakly Supervised Instance Segmentation
por: Ou, Jia-Rong, et al.
Publicado: (2021) -
Ricci Curvature-Based Semi-Supervised Learning on an Attributed Network
por: Wu, Wei, et al.
Publicado: (2021) -
Lidar–Camera Semi-Supervised Learning for Semantic Segmentation
por: Caltagirone, Luca, et al.
Publicado: (2021) -
Semi-Supervised Adversarial Learning Using LSTM for Human Activity Recognition
por: Yang, Sung-Hyun, et al.
Publicado: (2022)