Cargando…
A novel approach to automatic sleep stage classification using forehead electrophysiological signals
BACKGROUND: Sleep stage scoring is very important for the effective diagnosis and intervention of sleep disorders. However, the current automatic sleep staging methods generally have the problems of poor model generalization ability and non-portable acquisition equipment. METHOD: In this paper, we p...
Autores principales: | Guo, Hengyan, Di, Yang, An, Xingwei, Wang, Zhongpeng, Ming, Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798185/ https://www.ncbi.nlm.nih.gov/pubmed/36590566 http://dx.doi.org/10.1016/j.heliyon.2022.e12136 |
Ejemplares similares
-
MMASleepNet: A multimodal attention network based on electrophysiological signals for automatic sleep staging
por: Yubo, Zheng, et al.
Publicado: (2022) -
Fast Convolutional Method for Automatic Sleep Stage Classification
por: Yulita, Intan Nurma, et al.
Publicado: (2018) -
Knowledge-based identification of sleep stages based on two forehead electroencephalogram channels
por: Huang, Chih-Sheng, et al.
Publicado: (2014) -
Joint Classification and Prediction CNN Framework for Automatic Sleep Stage Classification
Publicado: (2018) -
Automatic neonatal sleep stage classification: A comparative study
por: Abbasi, Saadullah Farooq, et al.
Publicado: (2023)