Cargando…
Machine Learning-Based Analytical Systems: Food Forensics
[Image: see text] Despite a large amount of money being spent on both food analyses and control measures, various food-borne illnesses associated with pathogens, toxins, pesticides, adulterants, colorants, and other contaminants pose a serious threat to human health, and thus food safety draws consi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798398/ https://www.ncbi.nlm.nih.gov/pubmed/36591133 http://dx.doi.org/10.1021/acsomega.2c05632 |
Sumario: | [Image: see text] Despite a large amount of money being spent on both food analyses and control measures, various food-borne illnesses associated with pathogens, toxins, pesticides, adulterants, colorants, and other contaminants pose a serious threat to human health, and thus food safety draws considerable attention in the modern pace of the world. The presence of various biogenic amines in processed food have been frequently considered as the primary quality parameter in order to check food freshness and spoilage of protein-rich food. Various conventional detection methods for detecting hazardous analytes including microscopy, nucleic acid, and immunoassay-based techniques have been employed; however, recently, array-based sensing strategies are becoming popular for the development of a highly accurate and precise analytical method. Array-based sensing is majorly facilitated by the advancements in multivariate analytical techniques as well as machine learning-based approaches. These techniques allow one to solve the typical problem associated with the interpretation of the complex response patterns generated in array-based strategies. Consequently, the machine learning-based neural networks enable the fast, robust, and accurate detection of analytes using sensor arrays. Thus, for commercial applications, most of the focus has shifted toward the development of analytical methods based on electrical and chemical sensor arrays. Therefore, herein, we briefly highlight and review the recently reported array-based sensor systems supported by machine learning and multivariate analytics to monitor food safety and quality in the field of food forensics. |
---|