Cargando…
Machine Learning-Assisted Prediction of the Biological Activity of Aromatase Inhibitors and Data Mining to Explore Similar Compounds
[Image: see text] Designing molecules for drugs has been a hot topic for many decades. However, it is hard and expensive to find a new molecule. Thus, the cost of the final drug is also increased. Machine learning can provide the fastest way to predict the biological activity of druglike molecules....
Autores principales: | Ishfaq, Muhammad, Aamir, Muhammad, Ahmad, Farooq, M Mebed, Abdelazim, Elshahat, Sayed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798507/ https://www.ncbi.nlm.nih.gov/pubmed/36591131 http://dx.doi.org/10.1021/acsomega.2c06174 |
Ejemplares similares
-
Generation of Chemical
Space of Compounds for Prostate Cancer Treatment: Biological Activity
Prediction, Clustering, and Visualization of Chemical Space
por: Ishfaq, Muhammad, et al.
Publicado: (2023) -
Adsorption of CO over the Heusler alloy CrCoIrGa(001) surface: first-principles insights
por: Mebed, Abdelazim M., et al.
Publicado: (2022) -
Energy Level Prediction of Organic Semiconductors for Photodetectors and Mining of a Photovoltaic Database to Search for New Building Units
por: Saleh, Jehad, et al.
Publicado: (2023) -
Ameliorating the Mechanical Parameters, Thermal Stability, and Wettability of Acrylic Polymer by Cement Filling for High-Efficiency Waterproofing
por: Abd-Elnaiem, Alaa M., et al.
Publicado: (2022) -
Predicting Breast Cancer Leveraging Supervised Machine Learning Techniques
por: Aamir, Sanam, et al.
Publicado: (2022)