Cargando…
The company we keep. Using hemodialysis social network data to classify patients’ kidney transplant attitudes with machine learning algorithms
BACKGROUND: Hemodialysis clinic patient social networks may reinforce positive and negative attitudes towards kidney transplantation. We examined whether a patient’s position within the hemodialysis clinic social network could improve machine learning classification of the patient’s positive or nega...
Autores principales: | Aljurbua, Rafaa, Gillespie, Avrum, Obradovic, Zoran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798634/ https://www.ncbi.nlm.nih.gov/pubmed/36581930 http://dx.doi.org/10.1186/s12882-022-03049-2 |
Ejemplares similares
-
Together We Can Improve Outcomes in Kidney Failure: Examining Social Networks in Hemodialysis
por: Gillespie, Avrum
Publicado: (2019) -
The companies we keep: corporate governance for a democratic society
por: Hutchinson, Allan C
Publicado: (2005) -
Communication Breakdown: Improving Communication Between Transplant Centers and Dialysis Facilities to Improve Access to Kidney Transplantation
por: Gillespie, Avrum
Publicado: (2021) -
Plants and sodium ions: keeping company with the enemy
por: Pardo, Jose M, et al.
Publicado: (2002) -
Implicit Bias Reflects the Company That Words Keep
por: Hauser, David J., et al.
Publicado: (2022)