Cargando…
Sushi domain-containing protein 4 binds to epithelial growth factor receptor and initiates autophagy in an EGFR phosphorylation independent manner
BACKGROUND: Sushi domain-containing protein 4 (SUSD4) is a recently discovered protein with unknown cellular functions. We previously revealed that SUSD4 can act as complement inhibitor and as a potential tumor suppressor. METHODS: In a syngeneic mouse model of breast cancer, tumors expressing SUSD4...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798675/ https://www.ncbi.nlm.nih.gov/pubmed/36578014 http://dx.doi.org/10.1186/s13046-022-02565-1 |
_version_ | 1784860953951600640 |
---|---|
author | Papadakos, Konstantinos S. Ekström, Alexander Slipek, Piotr Skourti, Eleni Reid, Steven Pietras, Kristian Blom, Anna M. |
author_facet | Papadakos, Konstantinos S. Ekström, Alexander Slipek, Piotr Skourti, Eleni Reid, Steven Pietras, Kristian Blom, Anna M. |
author_sort | Papadakos, Konstantinos S. |
collection | PubMed |
description | BACKGROUND: Sushi domain-containing protein 4 (SUSD4) is a recently discovered protein with unknown cellular functions. We previously revealed that SUSD4 can act as complement inhibitor and as a potential tumor suppressor. METHODS: In a syngeneic mouse model of breast cancer, tumors expressing SUSD4 had a smaller volume compared with the corresponding mock control tumors. Additionally, data from three different expression databases and online analysis tools confirm that for breast cancer patients, high mRNA expression of SUSD4 in the tumor tissue correlates with a better prognosis. In vitro experiments utilized triple-negative breast cancer cell lines (BT-20 and MDA-MB-468) stably expressing SUSD4. Moreover, we established a cell line based on BT-20 in which the gene for EGFR was knocked out with the CRISPR-Cas9 method. RESULTS: We discovered that the Epithelial Growth Factor Receptor (EGFR) interacts with SUSD4. Furthermore, triple-negative breast cancer cell lines stably expressing SUSD4 had higher autophagic flux. The initiation of autophagy required the expression of EGFR but not phosphorylation of the receptor. Expression of SUSD4 in the breast cancer cells led to activation of the tumor suppressor LKB1 and consequently to the activation of AMPKα1. Finally, autophagy was initiated after stimulation of the ULK1, Atg14 and Beclin-1 axis in SUSD4 expressing cells. CONCLUSIONS: In this study we provide novel insight into the molecular mechanism of action whereby SUSD4 acts as an EGFR inhibitor without affecting the phosphorylation of the receptor and may potentially influence the recycling of EGFR to the plasma membrane. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13046-022-02565-1. |
format | Online Article Text |
id | pubmed-9798675 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-97986752022-12-30 Sushi domain-containing protein 4 binds to epithelial growth factor receptor and initiates autophagy in an EGFR phosphorylation independent manner Papadakos, Konstantinos S. Ekström, Alexander Slipek, Piotr Skourti, Eleni Reid, Steven Pietras, Kristian Blom, Anna M. J Exp Clin Cancer Res Research BACKGROUND: Sushi domain-containing protein 4 (SUSD4) is a recently discovered protein with unknown cellular functions. We previously revealed that SUSD4 can act as complement inhibitor and as a potential tumor suppressor. METHODS: In a syngeneic mouse model of breast cancer, tumors expressing SUSD4 had a smaller volume compared with the corresponding mock control tumors. Additionally, data from three different expression databases and online analysis tools confirm that for breast cancer patients, high mRNA expression of SUSD4 in the tumor tissue correlates with a better prognosis. In vitro experiments utilized triple-negative breast cancer cell lines (BT-20 and MDA-MB-468) stably expressing SUSD4. Moreover, we established a cell line based on BT-20 in which the gene for EGFR was knocked out with the CRISPR-Cas9 method. RESULTS: We discovered that the Epithelial Growth Factor Receptor (EGFR) interacts with SUSD4. Furthermore, triple-negative breast cancer cell lines stably expressing SUSD4 had higher autophagic flux. The initiation of autophagy required the expression of EGFR but not phosphorylation of the receptor. Expression of SUSD4 in the breast cancer cells led to activation of the tumor suppressor LKB1 and consequently to the activation of AMPKα1. Finally, autophagy was initiated after stimulation of the ULK1, Atg14 and Beclin-1 axis in SUSD4 expressing cells. CONCLUSIONS: In this study we provide novel insight into the molecular mechanism of action whereby SUSD4 acts as an EGFR inhibitor without affecting the phosphorylation of the receptor and may potentially influence the recycling of EGFR to the plasma membrane. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13046-022-02565-1. BioMed Central 2022-12-29 /pmc/articles/PMC9798675/ /pubmed/36578014 http://dx.doi.org/10.1186/s13046-022-02565-1 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Papadakos, Konstantinos S. Ekström, Alexander Slipek, Piotr Skourti, Eleni Reid, Steven Pietras, Kristian Blom, Anna M. Sushi domain-containing protein 4 binds to epithelial growth factor receptor and initiates autophagy in an EGFR phosphorylation independent manner |
title | Sushi domain-containing protein 4 binds to epithelial growth factor receptor and initiates autophagy in an EGFR phosphorylation independent manner |
title_full | Sushi domain-containing protein 4 binds to epithelial growth factor receptor and initiates autophagy in an EGFR phosphorylation independent manner |
title_fullStr | Sushi domain-containing protein 4 binds to epithelial growth factor receptor and initiates autophagy in an EGFR phosphorylation independent manner |
title_full_unstemmed | Sushi domain-containing protein 4 binds to epithelial growth factor receptor and initiates autophagy in an EGFR phosphorylation independent manner |
title_short | Sushi domain-containing protein 4 binds to epithelial growth factor receptor and initiates autophagy in an EGFR phosphorylation independent manner |
title_sort | sushi domain-containing protein 4 binds to epithelial growth factor receptor and initiates autophagy in an egfr phosphorylation independent manner |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798675/ https://www.ncbi.nlm.nih.gov/pubmed/36578014 http://dx.doi.org/10.1186/s13046-022-02565-1 |
work_keys_str_mv | AT papadakoskonstantinoss sushidomaincontainingprotein4bindstoepithelialgrowthfactorreceptorandinitiatesautophagyinanegfrphosphorylationindependentmanner AT ekstromalexander sushidomaincontainingprotein4bindstoepithelialgrowthfactorreceptorandinitiatesautophagyinanegfrphosphorylationindependentmanner AT slipekpiotr sushidomaincontainingprotein4bindstoepithelialgrowthfactorreceptorandinitiatesautophagyinanegfrphosphorylationindependentmanner AT skourtieleni sushidomaincontainingprotein4bindstoepithelialgrowthfactorreceptorandinitiatesautophagyinanegfrphosphorylationindependentmanner AT reidsteven sushidomaincontainingprotein4bindstoepithelialgrowthfactorreceptorandinitiatesautophagyinanegfrphosphorylationindependentmanner AT pietraskristian sushidomaincontainingprotein4bindstoepithelialgrowthfactorreceptorandinitiatesautophagyinanegfrphosphorylationindependentmanner AT blomannam sushidomaincontainingprotein4bindstoepithelialgrowthfactorreceptorandinitiatesautophagyinanegfrphosphorylationindependentmanner |